Elevated O3 reduces the fitness of Bemisia tabaci via enhancement of the SA-dependent defense of the tomato plant

[1]  T. Scheper,et al.  Transcriptome analysis. , 2012, Advances in biochemical engineering/biotechnology.

[2]  Chuanyou Li,et al.  Elevated CO2 Influences Nematode-Induced Defense Responses of Tomato Genotypes Differing in the JA Pathway , 2011, PloS one.

[3]  F. Ge,et al.  Effect of elevated O3 associated with Bt cotton on the abundance, diversity and community structure of soil Collembola , 2011 .

[4]  L. Boykin,et al.  Bemisia tabaci: a statement of species status. , 2011, Annual review of entomology.

[5]  L. Walling,et al.  Tomato Pathogenesis-related Protein Genes are Expressed in Response to Trialeurodes vaporariorum and Bemisia tabaci Biotype B Feeding , 2010, Journal of Chemical Ecology.

[6]  M. Xie,et al.  Volatile Emissions from the Invasive Weed Eupatorium adenophorum Induced by Aphis gossypii Feeding and Methyl Jasmonate Treatment , 2010, Weed Science.

[7]  H. Sakugawa,et al.  Simultaneous ozone fumigation and fluoranthene sprayed as mists negatively affected cherry tomato (Lycopersicon esculentum Mill). , 2010, Ecotoxicology and environmental safety.

[8]  Jian Sun,et al.  H2O2 and cytosolic Ca2+ signals triggered by the PM H-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells. , 2010, Plant, cell & environment.

[9]  L. Kang,et al.  Elevated CO2 changes the interactions between nematode and tomato genotypes differing in the JA pathway. , 2010, Plant, cell & environment.

[10]  S. Wilkinson,et al.  Drought, ozone, ABA and ethylene: new insights from cell to plant to community. , 2010, Plant, cell & environment.

[11]  M. A. Martínez-Ghersa,et al.  Aphid and episodic O3 injury in arugula plants (Eruca sativa Mill) grown in open-top field chambers , 2010 .

[12]  Petra M. Bleeker,et al.  The Role of Specific Tomato Volatiles in Tomato-Whitefly Interaction1[W][OA] , 2009, Plant Physiology.

[13]  Gang Wu,et al.  No effects of elevated CO2 on the population relationship between cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), and its parasitoid, Microplitis mediator Haliday (Hymenoptera: Braconidae). , 2009 .

[14]  W. Xie,et al.  Fitness costs and morphological change of laboratory‐selected thiamethoxam resistance in the B‐type Bemisia tabaci (Hemiptera: Aleyrodidae) , 2009 .

[15]  J. Browse,et al.  Jasmonate passes muster: a receptor and targets for the defense hormone. , 2009, Annual review of plant biology.

[16]  J. Fargues,et al.  Compatibility between biopesticides used to control grey mould, powdery mildew and whitefly on tomato , 2008 .

[17]  G. Meur,et al.  Constitutive expression of Arabidopsis NPR1 confers enhanced resistance to the early instars of Spodoptera litura in transgenic tobacco. , 2008, Physiologia plantarum.

[18]  Tommy S. Jørstad,et al.  Towards global understanding of plant defence against aphids--timing and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack. , 2008, Plant, cell & environment.

[19]  J. Ohnishi,et al.  Function of jasmonate in response and tolerance of Arabidopsis to thrip feeding. , 2008, Plant & cell physiology.

[20]  D. Frohlich,et al.  Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequences. , 2007, Molecular phylogenetics and evolution.

[21]  Xiao Yang,et al.  Vector-Virus Mutualism Accelerates Population Increase of an Invasive Whitefly , 2007, PloS one.

[22]  L. Walling,et al.  Arabidopsis Transcriptome Changes in Response to Phloem-Feeding Silverleaf Whitefly Nymphs. Similarities and Distinctions in Responses to Aphids1[W][OA] , 2006, Plant Physiology.

[23]  L. Walling,et al.  Silverleaf Whitefly Induces Salicylic Acid Defenses and Suppresses Effectual Jasmonic Acid Defenses1[W][OA] , 2006, Plant Physiology.

[24]  Weidong Huang,et al.  Novel interrelationship between salicylic acid, abscisic acid, and PIP2-specific phospholipase C in heat acclimation-induced thermotolerance in pea leaves. , 2006, Journal of experimental botany.

[25]  I. Kaloshian,et al.  Mi-1-Mediated aphid resistance involves salicylic acid and mitogen-activated protein kinase signaling cascades. , 2006, Molecular plant-microbe interactions : MPMI.

[26]  G. Thompson,et al.  Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. , 2006, Journal of experimental botany.

[27]  D. Jaffe,et al.  Increase in surface ozone at rural sites in the western US , 2005 .

[28]  Venkatramana Pegadaraju,et al.  Premature Leaf Senescence Modulated by the Arabidopsis PHYTOALEXIN DEFICIENT4 Gene Is Associated with Defense against the Phloem-Feeding Green Peach Aphid1[W] , 2005, Plant Physiology.

[29]  Jian-ye Chen,et al.  Salicylic acid induced the expression of phenylalanine ammonia-lyase gene in grape berry , 2005 .

[30]  M. Ashmore Assessing the future global impacts of ozone on vegetation , 2005 .

[31]  J. Kangasjärvi,et al.  Signalling and cell death in ozone‐exposed plants , 2005 .

[32]  W. J. Zhang,et al.  Analysis of genetic diversity among different geographical populations and determination of biotypes of Bemisia tabaci in China , 2005 .

[33]  E. P. McDonald,et al.  CO2 and O3 effects on host plant preferences of the forest tent caterpillar (Malacosoma disstria) , 2005 .

[34]  T. A. Beek,et al.  Phloem sap collection from lettuce (Lactuca sativa L.): Chemical comparison among collection methods , 1994, Journal of Chemical Ecology.

[35]  F. Goggin,et al.  ACQUIRED AND R-GENE-MEDIATED RESISTANCE AGAINST THE POTATO APHID IN TOMATO , 2004, Journal of Chemical Ecology.

[36]  R. Lindroth,et al.  Divergent pheromone‐mediated insect behaviour under global atmospheric change , 2004 .

[37]  Wu Gang,et al.  Growth, development and reproduction of the cotton bollworm, Helicoverpa armigera (Hubner) reared on milky grains of wheat grown in elevated CO2 concentration , 2004 .

[38]  R. Harrington,et al.  Aphid individual performance may not predict population responses to elevated CO2 or O3 , 2004 .

[39]  R. Vingarzan A review of surface ozone background levels and trends , 2004 .

[40]  M. Aono,et al.  Transcriptome analysis of O3-exposed Arabidopsis reveals that multiple signal pathways act mutually antagonistically to induce gene expression , 2003, Plant Molecular Biology.

[41]  T. Rufty,et al.  Survival and Development of Tobacco Hornworm Larvae on Tobacco Plants Grown Under Elevated Levels of Ozone , 2004, Journal of Chemical Ecology.

[42]  G. Agrawal,et al.  Isolation of an ozone-sensitive and jasmonate-semi-insensitive Arabidopsis mutant (oji1). , 2003, Plant & cell physiology.

[43]  A. Kacperska,et al.  Phenylpropanoid deficiency affects the course of plant acclimation to cold , 2003 .

[44]  I. Kaloshian,et al.  Aphid-induced defense responses in Mi-1-mediated compatible and incompatible tomato interactions. , 2003, Molecular plant-microbe interactions : MPMI.

[45]  V. Argandoña,et al.  Relationships between salicylic acid content, phenylalanine ammonia-lyase (PAL) activity, and resistance of barley to aphid infestation. , 2003, Journal of agricultural and food chemistry.

[46]  C. Andersen Source-sink balance and carbon allocation below ground in plants exposed to ozone. , 2003, The New phytologist.

[47]  Angela E. Douglas,et al.  The Nutritional Physiology of Aphids , 2003 .

[48]  R. I C H,et al.  Aphid individual performance may not predict population responses to elevated CO 2 or O 3 , 2003 .

[49]  R. E. Dickson,et al.  Altered performance of forest pests under atmospheres enriched by CO2 and O3 , 2002, Nature.

[50]  J. Turner,et al.  Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae. , 2002, Molecular plant-microbe interactions : MPMI.

[51]  J. Holopainen Aphid response to elevated ozone and CO2 , 2002 .

[52]  J. Barnes,et al.  The effect of ozone fumigation and different Brassica rapa lines on the feeding behaviour of Pieris brassicae larvae , 2002 .

[53]  S. Grün,et al.  Oxidative burst and cell death in ozone-exposed plants , 2002 .

[54]  L. Reale,et al.  Salicylic acid modulates ozone-induced hypersensitive cell death in tobacco plants. , 2002, Physiologia plantarum.

[55]  K. Pihlaja,et al.  Phenolics and betacyanins in red beetroot (Beta vulgaris) root: distribution and effect of cold storage on the content of total phenolics and three individual compounds. , 2000, Journal of agricultural and food chemistry.

[56]  R. Creelman,et al.  Jasmonic Acid Signaling Modulates Ozone-Induced Hypersensitive Cell Death , 2000, Plant Cell.

[57]  T. Holopainen,et al.  Combined effects of ozone and nitrogen on secondary compounds, amino acids, and aphid performance in Scots pine , 2000 .

[58]  J. Blackmer,et al.  Changes in amino acids in Cucumis melo in relation to life‐history traits and flight propensity of Bemisia tabaci , 1999 .

[59]  J. Koricheva,et al.  Regulation of Woody Plant Secondary Metabolism by Resource Availability: Hypothesis Testing by Means of Meta-Analysis , 1998 .

[60]  R. Creelman,et al.  BIOSYNTHESIS AND ACTION OF JASMONATES IN PLANTS. , 1997, Annual review of plant physiology and plant molecular biology.

[61]  M. H. Mansour,et al.  The relationship between tannins concentration in some cotton varieties and susceptibility to piercing sucking insects , 1997 .

[62]  J. Oksanen,et al.  Effects of gaseous air pollutants on aphid performance on Scots pine and Norway spruce seedlings , 1995 .

[63]  P. Barbosa,et al.  Nitrogen fertilizer effect on selection, acceptance, and suitability of Euphorbia pulcherrima (Euphorbiaceae) as a host plant to Bemisia tabaci (Homoptera: Aleyrodidae) , 1995 .

[64]  P. Barbosa,et al.  Within-plant variation in nitrogen and sugar content of poinsettia and its effects on the oviposition pattern, survival, and development of Bemisia argentifolii (Homoptera: Aleyrodidae) , 1995 .

[65]  J. Irigoyen,et al.  Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativd) plants , 1992 .

[66]  J. Irigoyen,et al.  Alfalfa leaf senescence induced by drought stress: photosynthesis, hydrogen peroxide metabolism, lipid peroxidation and ethylene evolution , 1992 .

[67]  T. N. Barry,et al.  Determination of extractable and bound condensed tannin concentrations in forage plants, protein concentrate meals and cereal grains , 1992 .

[68]  T. Bakowski,et al.  Effect of secondary plant substances on winter wheat resistance to grain aphid , 1989 .

[69]  H. Chi Life-Table Analysis Incorporating Both Sexes and Variable Development Rates Among Individuals , 1988 .

[70]  H. Chi,et al.  TWO NEW METHODS FOR THE STUDY OF INSECT POPULATION ECOLOGY , 1985 .

[71]  W. J. Mattson,et al.  Herbivory in relation to plant nitrogen content , 1980 .

[72]  E. Va,et al.  CO 2 and O 3 effects on host plant preferences of the forest tent caterpillar ( Malacosoma disstria ) , 2022 .