On Minimal Cubature Formulae of Small Degree for Spherically Symmetric Integrals

The aim of this paper is to develop the existence and nonexistence problem of a cubature formula of degree $4k+1$ for a spherically symmetric integral which attains the Moller lower bound. For this purpose we bring together the theory of Euclidean design in combinatorics and that of reproducing kernels in numerical analysis. We show that if there exists a minimal formula of degree $4k+1$, then the nodes are distributed into $k+1$ concentric spheres including the origin, and the weights in the formula are a constant on each concentric sphere. We particularly focus on the cases of degrees 5 and 9. We show the equivalence between a minimal formula of degrees 5 and 4, and a spherical tight 5- and 4-design. We also prove that there exists no minimal formula of degree 9 for some classical weights such as the Gaussian weight on $\mathbb{R}^d$, the radial exponential weight on $\mathbb{R}^d$, and the Jacobi weight on $B^d$.

[1]  Yuan Xu,et al.  Orthogonal Polynomials of Several Variables , 2014, 1701.02709.

[2]  H. M. Möller,et al.  Lower Bounds for the Number of Nodes in Cubature Formulae , 1979 .

[3]  J. J. Seidel,et al.  Fisher type inequalities for Euclidean t-designs , 1989 .

[4]  J. Seidel,et al.  Spherical codes and designs , 1977 .

[5]  Mark A. Taylor Cubature for the sphere and the discrete spherical harmonic transform , 1995 .

[6]  Nicolas Victoir Asymmetric Cubature Formulae with Few Points in High Dimension for Symmetric Measures , 2004, SIAM J. Numer. Anal..

[7]  R. M. Damerell,et al.  Tight Spherical Disigns, II , 1980 .

[8]  Ronald Cools,et al.  On cubature formulae of degree 4k+1 attaining Möller's lower bound for integrals with circular symmetry , 1992 .

[9]  Masanori Sawa,et al.  Cubature formulas in numerical analysis and Euclidean tight designs , 2010, Eur. J. Comb..

[10]  Ronald Cools,et al.  A new lower bound for the number of nodes in cubature formulae of degree 4 n + 1 for some circularly symmetric integrals , 1993 .

[11]  Akihiro Munemasa,et al.  The nonexistence of certain tight spherical designs , 2005 .

[12]  Bruce Reznick Some constructions of spherical 5-designs☆ , 1995 .

[13]  Greg Kuperberg Numerical Cubature Using Error-Correcting Codes , 2006, SIAM J. Numer. Anal..

[14]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[15]  Eiichi Bannai,et al.  Tight Gaussian 4-Designs , 2005 .

[16]  Arnold Neumaier,et al.  Discrete measures for spherical designs, eutactic stars and lattices , 1988 .

[17]  Ronald Cools,et al.  An encyclopaedia of cubature formulas , 2003, J. Complex..

[18]  Hans Joachim Schmid Construction of Cubature Formulae Using Real Ideals , 1979 .

[19]  Eiichi Bannai,et al.  Tight spherical designs, I , 1979 .

[20]  H. J. Schmid INTERPOLATORY CUBATURE FORMULAE AND REAL IDEALS , 1980 .

[21]  Yuan Xu Minimal cubature formulae for a family of radial weight functions , 1998, Adv. Comput. Math..

[22]  B. Reznick Sums of Even Powers of Real Linear Forms , 1992 .

[23]  Yuan Xu,et al.  Summability of Fourier orthogonal series for Jacobi weight on a ball in ℝ , 1999 .

[24]  Hans Joachim Schmid,et al.  On the number of nodes in n -dimensional cubature formulae of degree 5 for integrals over the ball , 2004 .

[25]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[26]  Etsuko Bannai,et al.  On antipodal Euclidean tight (2e + 1)-designs , 2006 .