Discontinuous Galerkin method for the spherically reduced Baumgarte-Shapiro-Shibata-Nakamura system with second-order operators

We present a high-order accurate discontinuous Galerkin method for evolving the spherically reduced Baumgarte-Shapiro-Shibata-Nakamura (BSSN) system expressed in terms of second-order spatial operators. Our multidomain method achieves global spectral accuracy and longtime stability on short computational domains. We discuss in detail both our scheme for the BSSN system and its implementation. After a theoretical and computational verification of the proposed scheme, we conclude with a brief discussion of issues likely to arise when one considers the full BSSN system.

[1]  J. D. Brown BSSN in spherical symmetry , 2007, 0705.3845.

[2]  I. Hinder The current status of binary black hole simulations in numerical relativity , 2010, 1001.5161.

[3]  Z. Etienne,et al.  Filling the holes: Evolving excised binary black hole initial data with puncture techniques , 2007, 0707.2083.

[4]  G. Dautcourt On the Newtonian limit of general relativity , 1990 .

[5]  Frans Pretorius,et al.  Simulation of binary black hole spacetimes with a harmonic evolution scheme , 2006, gr-qc/0602115.

[6]  A. Schneebeli Interior penalty discontinuous galerkin methods for electromagnetic and acoustic wave equations , 2006 .

[7]  N. Kemmer,et al.  The Theory of Space, Time and Gravitation , 1964 .

[8]  Seidel,et al.  New formalism for numerical relativity. , 1995, Physical review letters.

[9]  L. Rezzolla,et al.  An explicit harmonic code for black-hole evolution using excision , 2006, gr-qc/0612150.

[10]  B. Schmidt Einstein's Field Equations and Their Physical Implications: Selected Essays In Honour Of Jürgen Ehlers , 2010 .

[11]  J. D. Brown Probing the puncture for black hole simulations , 2009, 0908.3814.

[12]  Jan S. Hesthaven,et al.  Spectral Methods for Time-Dependent Problems: Contents , 2007 .

[13]  The Cauchy problem for the Einstein equations , 2000, gr-qc/0002074.

[14]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[15]  S. Nissanke,et al.  Binary-black-hole merger: symmetry and the spin expansion. , 2007, Physical review letters.

[16]  Mark Hannam,et al.  Status of black-hole-binary simulations for gravitational-wave detection , 2009, 0901.2931.

[17]  R. Arnowitt,et al.  Republication of: The dynamics of general relativity , 2004 .

[18]  Edward Seidel,et al.  Accurate Evolutions of Orbiting Binary Black Holes , 2006 .

[19]  Where do moving punctures go , 2006, gr-qc/0612097.

[20]  Jan S. Hesthaven,et al.  Discontinuous Galerkin method for computing gravitational waveforms from extreme mass ratio binaries , 2009, 0902.1287.

[21]  D. Schötzau,et al.  Interior penalty discontinuous Galerkin method for Maxwell's equations , 2007 .

[22]  Lawrence E. Kidder,et al.  A new generalized harmonic evolution system , 2005, gr-qc/0512093.

[23]  J. D. Brown Puncture evolution of Schwarzschild black holes , 2007, 0705.1359.

[24]  Frans Pretorius,et al.  Evolution of binary black-hole spacetimes. , 2005, Physical review letters.

[25]  Edward Seidel,et al.  Accurate evolution of orbiting binary black holes. , 2006, Physical review letters.

[26]  H. Kreiss,et al.  Initial-Boundary Value Problems and the Navier-Stokes Equations , 2004 .

[27]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[28]  Yan Xu,et al.  Local discontinuous Galerkin methods for the Kuramoto-Sivashinsky equations and the Ito-type coupled KdV equations , 2006 .

[29]  Khosro Shahbazi,et al.  An explicit expression for the penalty parameter of the interior penalty method , 2022 .

[30]  Symmetric Hyperbolic System in the Ashtekar Formulation , 1998, gr-qc/9803077.

[31]  O. Sarbach,et al.  Boundary conditions for the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein's field equations , 2009, 0910.5763.

[32]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[33]  D. Shoemaker,et al.  Unequal mass binary black hole plunges and gravitational recoil , 2006, gr-qc/0601026.

[34]  Well-posed forms of the 3+1 conformally-decomposed Einstein equations , 1999, gr-qc/9904048.

[35]  William McCrea,et al.  The Theory of Space, Time and Gravitation , 1961 .

[36]  Helmut Friedrich,et al.  Hyperbolic reductions for Einstein's equations , 1996 .

[37]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[38]  Symmetric hyperbolic systems for Bianchi equations , 1998, gr-qc/9805042.

[39]  E. Schnetter,et al.  Turduckening black holes: An Analytical and computational study , 2008, 0809.3533.

[40]  Marcus J. Grote,et al.  Discontinuous Galerkin Finite Element Method for the Wave Equation , 2006, SIAM J. Numer. Anal..

[41]  A Conformal Hyperbolic Formulation of the Einstein Equations , 1999, gr-qc/9903030.

[42]  S. Husa,et al.  Geometry and regularity of moving punctures. , 2006, Physical review letters.

[43]  E. Seidel,et al.  Gauge conditions for long-term numerical black hole evolutions without excision , 2002, gr-qc/0206072.

[44]  Convergence and stability in numerical relativity , 2002, gr-qc/0207018.

[45]  F. Ohme,et al.  Wormholes and trumpets: Schwarzschild spacetime for the moving-puncture generation , 2008, 0804.0628.

[46]  Joshua R. Smith,et al.  LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.

[47]  J. Hesthaven,et al.  Nodal high-order methods on unstructured grids , 2002 .

[48]  Conformal invariance and the conformal-traceless decomposition of the gravitational field , 2005, gr-qc/0501092.

[49]  Jr.,et al.  Fixing Einstein's equations , 1999, gr-qc/9901021.

[50]  Binary black-hole evolutions of excision and puncture data , 2006, gr-qc/0606079.

[51]  Chi-Wang Shu,et al.  A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives , 2007, Math. Comput..

[52]  Last orbit of binary black holes , 2006, gr-qc/0601091.

[53]  Nicholas W. Taylor,et al.  Spectral methods for the wave equation in second-order form , 2010, 1005.2922.

[54]  Lawrence E. Kidder,et al.  High-accuracy waveforms for binary black hole inspiral, merger, and ringdown , 2008, 0810.1767.

[55]  C. Gundlach,et al.  Hyperbolicity of second order in space systems of evolution equations , 2005, gr-qc/0506037.

[56]  Chi-Wang Shu,et al.  Local discontinuous Galerkin methods for nonlinear Schrödinger equations , 2005 .

[57]  Lawrence E. Kidder,et al.  Extending the lifetime of 3D black hole computations with a new hyperbolic system of evolution equations , 2001, gr-qc/0105031.

[58]  Hyperbolic formulations and numerical relativity: experiments using Ashtekar's connection variables , 2000, gr-qc/0005003.

[59]  Gene H. Golub,et al.  Matrix computations , 1983 .

[60]  Black hole evolution with the BSSN system by pseudospectral methods , 2006, gr-qc/0609087.

[61]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[62]  I. Hinder,et al.  Constraint damping in the Z4 formulation and harmonic gauge , 2005, gr-qc/0504114.

[63]  Frittelli,et al.  First-order symmetric hyperbolic Einstein equations with arbitrary fixed gauge. , 1996, Physical review letters.

[64]  Dae-Il Choi,et al.  Gravitational-wave extraction from an inspiraling configuration of merging black holes. , 2005, Physical review letters.

[65]  S. Hern Numerical Relativity and Inhomogeneous Cosmologies , 2000, gr-qc/0004036.

[66]  Jr,et al.  Geometrical Well Posed Systems for the Einstein Equations , 1995 .

[67]  Harald P. Pfeiffer,et al.  Solving Einstein's equations with dual coordinate frames , 2006, gr-qc/0607056.

[68]  Frans Pretorius,et al.  Numerical relativity using a generalized harmonic decomposition , 2005 .

[69]  Analytical representation of a black hole puncture solution , 2007, gr-qc/0701037.

[70]  Sascha Husa,et al.  Calibration of moving puncture simulations , 2008 .

[71]  S. Shapiro,et al.  On the numerical integration of Einstein's field equations , 1998, gr-qc/9810065.

[72]  W. Marsden I and J , 2012 .

[73]  Pedro Marronetti,et al.  Binary black holes on a budget: simulations using workstations , 2007, gr-qc/0701123.

[74]  Hyperbolic formulations and numerical relativity: II. asymptotically constrained systems of Einstein equations , 2000, gr-qc/0007034.

[75]  J. York,et al.  Kinematics and dynamics of general relativity , 1979 .

[76]  Arlen Anderson,et al.  Einstein-Bianchi hyperbolic system for general relativity , 1997 .

[77]  C. Gundlach,et al.  Symmetric hyperbolic form of systems of second-order evolution equations subject to constraints , 2004, gr-qc/0402079.

[78]  Y. Zlochower,et al.  Accurate evolutions of orbiting black-hole binaries without excision. , 2006, Physical review letters.

[79]  E. Schnetter,et al.  Excision without excision , 2007, 0707.3101.

[80]  CONSTRUCTING HYPERBOLIC SYSTEMS IN THE ASHTEKAR FORMULATION OF GENERAL RELATIVITY , 1999, gr-qc/9901053.

[81]  van Putten MH,et al.  Nonlinear wave equations for relativity. , 1996, Physical review. D, Particles and fields.

[82]  Nakamura,et al.  Evolution of three-dimensional gravitational waves: Harmonic slicing case. , 1995, Physical review. D, Particles and fields.

[83]  Timothy C. Warburton,et al.  Nodal discontinuous Galerkin methods on graphics processors , 2009, J. Comput. Phys..

[84]  W. Tichy Long term black hole evolution with the BSSN system by pseudospectral methods , 2006, 0911.0973.