Discontinuous Galerkin method for the spherically reduced Baumgarte-Shapiro-Shibata-Nakamura system with second-order operators
暂无分享,去创建一个
Jan S. Hesthaven | Scott E. Field | Stephen R. Lau | J. Hesthaven | S. Lau | A. Mroué | Abdul H. Mroue
[1] J. D. Brown. BSSN in spherical symmetry , 2007, 0705.3845.
[2] I. Hinder. The current status of binary black hole simulations in numerical relativity , 2010, 1001.5161.
[3] Z. Etienne,et al. Filling the holes: Evolving excised binary black hole initial data with puncture techniques , 2007, 0707.2083.
[4] G. Dautcourt. On the Newtonian limit of general relativity , 1990 .
[5] Frans Pretorius,et al. Simulation of binary black hole spacetimes with a harmonic evolution scheme , 2006, gr-qc/0602115.
[6] A. Schneebeli. Interior penalty discontinuous galerkin methods for electromagnetic and acoustic wave equations , 2006 .
[7] N. Kemmer,et al. The Theory of Space, Time and Gravitation , 1964 .
[8] Seidel,et al. New formalism for numerical relativity. , 1995, Physical review letters.
[9] L. Rezzolla,et al. An explicit harmonic code for black-hole evolution using excision , 2006, gr-qc/0612150.
[10] B. Schmidt. Einstein's Field Equations and Their Physical Implications: Selected Essays In Honour Of Jürgen Ehlers , 2010 .
[11] J. D. Brown. Probing the puncture for black hole simulations , 2009, 0908.3814.
[12] Jan S. Hesthaven,et al. Spectral Methods for Time-Dependent Problems: Contents , 2007 .
[13] The Cauchy problem for the Einstein equations , 2000, gr-qc/0002074.
[14] J. Hesthaven,et al. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .
[15] S. Nissanke,et al. Binary-black-hole merger: symmetry and the spin expansion. , 2007, Physical review letters.
[16] Mark Hannam,et al. Status of black-hole-binary simulations for gravitational-wave detection , 2009, 0901.2931.
[17] R. Arnowitt,et al. Republication of: The dynamics of general relativity , 2004 .
[18] Edward Seidel,et al. Accurate Evolutions of Orbiting Binary Black Holes , 2006 .
[19] Where do moving punctures go , 2006, gr-qc/0612097.
[20] Jan S. Hesthaven,et al. Discontinuous Galerkin method for computing gravitational waveforms from extreme mass ratio binaries , 2009, 0902.1287.
[21] D. Schötzau,et al. Interior penalty discontinuous Galerkin method for Maxwell's equations , 2007 .
[22] Lawrence E. Kidder,et al. A new generalized harmonic evolution system , 2005, gr-qc/0512093.
[23] J. D. Brown. Puncture evolution of Schwarzschild black holes , 2007, 0705.1359.
[24] Frans Pretorius,et al. Evolution of binary black-hole spacetimes. , 2005, Physical review letters.
[25] Edward Seidel,et al. Accurate evolution of orbiting binary black holes. , 2006, Physical review letters.
[26] H. Kreiss,et al. Initial-Boundary Value Problems and the Navier-Stokes Equations , 2004 .
[27] Chi-Wang Shu,et al. The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .
[28] Yan Xu,et al. Local discontinuous Galerkin methods for the Kuramoto-Sivashinsky equations and the Ito-type coupled KdV equations , 2006 .
[29] Khosro Shahbazi,et al. An explicit expression for the penalty parameter of the interior penalty method , 2022 .
[30] Symmetric Hyperbolic System in the Ashtekar Formulation , 1998, gr-qc/9803077.
[31] O. Sarbach,et al. Boundary conditions for the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein's field equations , 2009, 0910.5763.
[32] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[33] D. Shoemaker,et al. Unequal mass binary black hole plunges and gravitational recoil , 2006, gr-qc/0601026.
[34] Well-posed forms of the 3+1 conformally-decomposed Einstein equations , 1999, gr-qc/9904048.
[35] William McCrea,et al. The Theory of Space, Time and Gravitation , 1961 .
[36] Helmut Friedrich,et al. Hyperbolic reductions for Einstein's equations , 1996 .
[37] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[38] Symmetric hyperbolic systems for Bianchi equations , 1998, gr-qc/9805042.
[39] E. Schnetter,et al. Turduckening black holes: An Analytical and computational study , 2008, 0809.3533.
[40] Marcus J. Grote,et al. Discontinuous Galerkin Finite Element Method for the Wave Equation , 2006, SIAM J. Numer. Anal..
[41] A Conformal Hyperbolic Formulation of the Einstein Equations , 1999, gr-qc/9903030.
[42] S. Husa,et al. Geometry and regularity of moving punctures. , 2006, Physical review letters.
[43] E. Seidel,et al. Gauge conditions for long-term numerical black hole evolutions without excision , 2002, gr-qc/0206072.
[44] Convergence and stability in numerical relativity , 2002, gr-qc/0207018.
[45] F. Ohme,et al. Wormholes and trumpets: Schwarzschild spacetime for the moving-puncture generation , 2008, 0804.0628.
[46] Joshua R. Smith,et al. LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.
[47] J. Hesthaven,et al. Nodal high-order methods on unstructured grids , 2002 .
[48] Conformal invariance and the conformal-traceless decomposition of the gravitational field , 2005, gr-qc/0501092.
[49] Jr.,et al. Fixing Einstein's equations , 1999, gr-qc/9901021.
[50] Binary black-hole evolutions of excision and puncture data , 2006, gr-qc/0606079.
[51] Chi-Wang Shu,et al. A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives , 2007, Math. Comput..
[52] Last orbit of binary black holes , 2006, gr-qc/0601091.
[53] Nicholas W. Taylor,et al. Spectral methods for the wave equation in second-order form , 2010, 1005.2922.
[54] Lawrence E. Kidder,et al. High-accuracy waveforms for binary black hole inspiral, merger, and ringdown , 2008, 0810.1767.
[55] C. Gundlach,et al. Hyperbolicity of second order in space systems of evolution equations , 2005, gr-qc/0506037.
[56] Chi-Wang Shu,et al. Local discontinuous Galerkin methods for nonlinear Schrödinger equations , 2005 .
[57] Lawrence E. Kidder,et al. Extending the lifetime of 3D black hole computations with a new hyperbolic system of evolution equations , 2001, gr-qc/0105031.
[58] Hyperbolic formulations and numerical relativity: experiments using Ashtekar's connection variables , 2000, gr-qc/0005003.
[59] Gene H. Golub,et al. Matrix computations , 1983 .
[60] Black hole evolution with the BSSN system by pseudospectral methods , 2006, gr-qc/0609087.
[61] S. Rebay,et al. A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .
[62] I. Hinder,et al. Constraint damping in the Z4 formulation and harmonic gauge , 2005, gr-qc/0504114.
[63] Frittelli,et al. First-order symmetric hyperbolic Einstein equations with arbitrary fixed gauge. , 1996, Physical review letters.
[64] Dae-Il Choi,et al. Gravitational-wave extraction from an inspiraling configuration of merging black holes. , 2005, Physical review letters.
[65] S. Hern. Numerical Relativity and Inhomogeneous Cosmologies , 2000, gr-qc/0004036.
[66] Jr,et al. Geometrical Well Posed Systems for the Einstein Equations , 1995 .
[67] Harald P. Pfeiffer,et al. Solving Einstein's equations with dual coordinate frames , 2006, gr-qc/0607056.
[68] Frans Pretorius,et al. Numerical relativity using a generalized harmonic decomposition , 2005 .
[69] Analytical representation of a black hole puncture solution , 2007, gr-qc/0701037.
[70] Sascha Husa,et al. Calibration of moving puncture simulations , 2008 .
[71] S. Shapiro,et al. On the numerical integration of Einstein's field equations , 1998, gr-qc/9810065.
[72] W. Marsden. I and J , 2012 .
[73] Pedro Marronetti,et al. Binary black holes on a budget: simulations using workstations , 2007, gr-qc/0701123.
[74] Hyperbolic formulations and numerical relativity: II. asymptotically constrained systems of Einstein equations , 2000, gr-qc/0007034.
[75] J. York,et al. Kinematics and dynamics of general relativity , 1979 .
[76] Arlen Anderson,et al. Einstein-Bianchi hyperbolic system for general relativity , 1997 .
[77] C. Gundlach,et al. Symmetric hyperbolic form of systems of second-order evolution equations subject to constraints , 2004, gr-qc/0402079.
[78] Y. Zlochower,et al. Accurate evolutions of orbiting black-hole binaries without excision. , 2006, Physical review letters.
[79] E. Schnetter,et al. Excision without excision , 2007, 0707.3101.
[80] CONSTRUCTING HYPERBOLIC SYSTEMS IN THE ASHTEKAR FORMULATION OF GENERAL RELATIVITY , 1999, gr-qc/9901053.
[81] van Putten MH,et al. Nonlinear wave equations for relativity. , 1996, Physical review. D, Particles and fields.
[82] Nakamura,et al. Evolution of three-dimensional gravitational waves: Harmonic slicing case. , 1995, Physical review. D, Particles and fields.
[83] Timothy C. Warburton,et al. Nodal discontinuous Galerkin methods on graphics processors , 2009, J. Comput. Phys..
[84] W. Tichy. Long term black hole evolution with the BSSN system by pseudospectral methods , 2006, 0911.0973.