Photoluminescent Ti3C2 MXene Quantum Dots for Multicolor Cellular Imaging

The fabrication of photoluminescent Ti3 C2 MXene quantum dots (MQDs) by a facile hydrothermal method is reported, which may greatly extend the applications of MXene-based materials. Interestingly, the as-prepared MQDs show excitation-dependent photoluminescence spectra with quantum yields of up to ≈10% due to strong quantum confinement. The applications of MQDs as biocompatible multicolor cellular imaging probes and zinc ion sensors are demonstrated.

[1]  Y. Gogotsi,et al.  One-step Solution Processing of Ag, Au and Pd@MXene Hybrids for SERS , 2016, Scientific Reports.

[2]  Yury Gogotsi,et al.  Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide , 2013, Science.

[3]  Qing Tang,et al.  Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. , 2012, Journal of the American Chemical Society.

[4]  H. Zeng,et al.  Cu-N dopants boost electron transfer and photooxidation reactions of carbon dots. , 2015, Angewandte Chemie.

[5]  Minghong Wu,et al.  Hydrothermal Route for Cutting Graphene Sheets into Blue‐Luminescent Graphene Quantum Dots , 2010, Advanced materials.

[6]  X. Tao,et al.  Sn⁴⁺ Ion Decorated Highly Conductive Ti3C2 MXene: Promising Lithium-Ion Anodes with Enhanced Volumetric Capacity and Cyclic Performance. , 2016, ACS nano.

[7]  C. Zhi,et al.  Ultrathin MXene‐Micropattern‐Based Field‐Effect Transistor for Probing Neural Activity , 2016, Advanced materials.

[8]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[9]  Xiaoyun Qin,et al.  Hydrothermal Treatment of Grass: A Low‐Cost, Green Route to Nitrogen‐Doped, Carbon‐Rich, Photoluminescent Polymer Nanodots as an Effective Fluorescent Sensing Platform for Label‐Free Detection of Cu(II) Ions , 2012, Advanced materials.

[10]  Zhen Zhou,et al.  Recent advances in MXene: Preparation, properties, and applications , 2015 .

[11]  Yi Tang,et al.  TiO2 nanoparticle modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances. , 2015, Biosensors & bioelectronics.

[12]  Pierre-Louis Taberna,et al.  Two-Dimensional Vanadium Carbide (MXene) as Positive Electrode for Sodium-Ion Capacitors. , 2015, The journal of physical chemistry letters.

[13]  Peiyi Wu,et al.  One‐Pot, Facile, and Versatile Synthesis of Monolayer MoS2/WS2 Quantum Dots as Bioimaging Probes and Efficient Electrocatalysts for Hydrogen Evolution Reaction , 2015 .

[14]  Zhang Chuanfang,et al.  階層的な五酸化ニオブ/炭素/ニオブカーバイド(MXene)ハイブリッド材料の合成と電荷貯蔵特性 , 2016 .

[15]  Yi Tang,et al.  An Organ-Like Titanium Carbide Material (MXene) with Multilayer Structure Encapsulating Hemoglobin for a Mediator-Free Biosensor , 2014 .

[16]  Xiao Liang,et al.  Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. , 2015, Angewandte Chemie.

[17]  Yury Gogotsi,et al.  Pseudocapacitive Electrodes Produced by Oxidant‐Free Polymerization of Pyrrole between the Layers of 2D Titanium Carbide (MXene) , 2016, Advanced materials.

[18]  Pierre-Louis Taberna,et al.  High capacitance of surface-modified 2D titanium carbide in acidic electrolyte , 2014 .

[19]  Y. Gogotsi,et al.  Ti₃C₂ MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. , 2014, ACS applied materials & interfaces.

[20]  Pierre-Louis Taberna,et al.  MXene: a promising transition metal carbide anode for lithium-ion batteries , 2012 .

[21]  Qingzhong Li,et al.  Monolayer Ti₂CO₂: A Promising Candidate for NH₃ Sensor or Capturer with High Sensitivity and Selectivity. , 2015, ACS applied materials & interfaces.

[22]  Chenhui Yang,et al.  A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2 , 2015 .

[23]  Majid Beidaghi,et al.  Solving the Capacitive Paradox of 2D MXene using Electrochemical Quartz‐Crystal Admittance and In Situ Electronic Conductance Measurements , 2015 .

[24]  Yongming Guo,et al.  Fluorescent carbon nanoparticles for the fluorescent detection of metal ions. , 2015, Biosensors & bioelectronics.

[25]  Kevin M. Cook,et al.  Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films , 2014, Chemistry of materials : a publication of the American Chemical Society.

[26]  Kevin M. Cook,et al.  X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes) , 2016 .

[27]  Yury Gogotsi,et al.  Flexible MXene/Carbon Nanotube Composite Paper with High Volumetric Capacitance , 2015, Advanced materials.

[28]  Xu Xiao,et al.  Synthesis and Charge Storage Properties of Hierarchical Niobium Pentoxide/Carbon/Niobium Carbide (MXene) Hybrid Materials , 2016 .

[29]  Y. Gogotsi,et al.  Synthesis of two-dimensional materials by selective extraction. , 2015, Accounts of chemical research.

[30]  Jing Chen,et al.  CO2 and temperature dual responsive "Smart" MXene phases. , 2015, Chemical communications.

[31]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[32]  Atsuo Yamada,et al.  Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors , 2015, Nature Communications.

[33]  Yury Gogotsi,et al.  Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance , 2014, Nature.

[34]  H. Zeng,et al.  Carbon and Graphene Quantum Dots for Optoelectronic and Energy Devices: A Review , 2015 .

[35]  V. Presser,et al.  One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. , 2014, Chemical communications.

[36]  Zusing Yang,et al.  Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). , 2007, Angewandte Chemie.

[37]  Yubin Hwang,et al.  Achieving type I, II, and III heterojunctions using functionalized MXene. , 2015, ACS applied materials & interfaces.

[38]  Dandan Sun,et al.  Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2 , 2015 .

[39]  D. Allwood,et al.  Fabrication and luminescence of monolayered boron nitride quantum dots. , 2014, Small.

[40]  Yury Gogotsi,et al.  Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media , 2014 .

[41]  N. Hilal,et al.  Can carbon-based nanomaterials revolutionize membrane fabrication for water treatment and desalination? , 2016 .

[42]  Chao Wu,et al.  Enhanced supercapacitive performance of delaminated two-dimensional titanium carbide/carbon nanotube composites in alkaline electrolyte , 2015 .

[43]  Chang E. Ren,et al.  Flexible and conductive MXene films and nanocomposites with high capacitance , 2014, Proceedings of the National Academy of Sciences.

[44]  Yury Gogotsi,et al.  25th Anniversary Article: MXenes: A New Family of Two‐Dimensional Materials , 2014, Advanced materials.

[45]  Yury Gogotsi,et al.  Antibacterial Activity of Ti₃C₂Tx MXene. , 2016, ACS nano.

[46]  Liberato Manna,et al.  Controlled growth of tetrapod-branched inorganic nanocrystals , 2003, Nature materials.

[47]  Yury Gogotsi,et al.  Two-dimensional transition metal carbides. , 2012, ACS nano.

[48]  X. Lou,et al.  Direct Synthesis of Anatase TiO2 Nanowires with Enhanced Photocatalytic Activity , 2012, Advanced materials.

[49]  M. Glimcher,et al.  Shape and size of isolated bone mineralites measured using atomic force microscopy , 2001, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[50]  Yury Gogotsi,et al.  Intercalation and delamination of layered carbides and carbonitrides , 2013, Nature Communications.

[51]  Yoshiyuki Kawazoe,et al.  Novel Electronic and Magnetic Properties of Two‐Dimensional Transition Metal Carbides and Nitrides , 2013 .

[52]  A. Yamada,et al.  Sodium-Ion Intercalation Mechanism in MXene Nanosheets. , 2016, ACS nano.

[53]  R. Asahi,et al.  Optically Tunable Amino‐Functionalized Graphene Quantum Dots , 2012, Advanced materials.

[54]  Lianjie Zhu,et al.  Ionic liquid-assisted synthesis of large-scale TiO2 nanoparticles with controllable phase by hydrolysis of TiCl4. , 2009, ACS nano.

[55]  Baozhong Liu,et al.  Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. , 2014, Journal of the American Chemical Society.