On the formation and growth of atmospheric nanoparticles

[1]  James N. Smith,et al.  Chemical composition of atmospheric nanoparticles during nucleation events in Atlanta , 2005 .

[2]  John H. Seinfeld,et al.  Kinetic modeling of Secondary Organic Aerosol formation: effects of particle- and gas-phase reactions of semivolatile products , 2007 .

[3]  A. Laaksonen,et al.  Simulations on the effect of sulphuric acid formation on atmospheric aerosol concentrations , 1995 .

[4]  A. Weinheimer,et al.  Deep convection as a source of new particles in the midlatitude upper troposphere , 2002 .

[5]  M. Komppula,et al.  Observations of new particle formation and size distributions at two different heights and surroundings in subarctic area in northern Finland , 2003 .

[6]  D. Tanner,et al.  Measurement of the gas phase concentration of H2SO4 and methane sulfonic acid and estimates of H2SO4 production and loss in the atmosphere , 1993 .

[7]  David M Stieb,et al.  Meta-Analysis of Time-Series Studies of Air Pollution and Mortality: Effects of Gases and Particles and the Influence of Cause of Death, Age, and Season , 2002, Journal of the Air & Waste Management Association.

[8]  Ari Laaksonen,et al.  Organic aerosol formation via sulphate cluster activation , 2004 .

[9]  P. Mcmurry,et al.  MEASURED ATMOSPHERIC NEW PARTICLE FORMATION RATES: IMPLICATIONS FOR NUCLEATION MECHANISMS , 1996 .

[10]  J. Salm,et al.  Bursts of intermediate ions in atmospheric air , 1998 .

[11]  J. Smith,et al.  Growth rates of freshly nucleated atmospheric particles in Atlanta , 2005 .

[12]  P. Mcmurry,et al.  Measurements of new particle formation and ultrafine particle growth rates at a clean continental site , 1997 .

[13]  R. Forkel,et al.  Observations of particle formation and growth in a mountainous forest region in central Europe , 2004 .

[14]  Hannes Tammet,et al.  Size and mobility of nanometer particles, clusters and ions , 1995 .

[15]  F. Yu From molecular clusters to nanoparticles: second-generation ion-mediated nucleation model , 2006 .

[16]  V. Mohnen Formation, Nature, and Mobility of Ions of Atmospheric Importance , 1976 .

[17]  A. Berner,et al.  A new electromobility spectrometer for the measurement of aerosol size distributions in the size range from 1 to 1000 nm , 1991 .

[18]  Armin Sorooshian,et al.  Evidence for organosulfates in secondary organic aerosol. , 2007, Environmental science & technology.

[19]  P. Kasibhatla,et al.  Is aerosol production within the remote marine boundary layer sufficient to maintain observed concentrations , 1999 .

[20]  T. Tuch,et al.  Structure, variability and persistence of the submicrometre marine aerosol , 2004 .

[21]  I. Riipinen,et al.  Initial steps of aerosol growth , 2004 .

[22]  Frank Arnold,et al.  Atmospheric sulphuric acid and aerosol formation : implications from atmospheric measurements for nucleation and early growth mechanisms , 2006 .

[23]  A. Laaksonen,et al.  Nucleation: measurements, theory, and atmospheric applications. , 1995, Annual review of physical chemistry.

[24]  Peter H. McMurry,et al.  Characteristics of regional nucleation events in urban East St. Louis , 2007 .

[25]  Thomas Tuch,et al.  Variability of the aerosol number size distribution in Beijing, China: New particle formation, dust storms, and high continental background , 2004 .

[26]  P. Mcmurry,et al.  Measurement of Expected Nucleation Precursor Species and 3–500-nm Diameter Particles at Mauna Loa Observatory, Hawaii , 1995 .

[27]  C. O'Dowd,et al.  Hygroscopic and CCN properties of aerosol particles in boreal forests , 2001 .

[28]  I. Riipinen,et al.  Connections between atmospheric sulphuric acid and new particle formation during QUEST III–IV campaigns in Heidelberg and Hyytiälä , 2006 .

[29]  Ari Laaksonen,et al.  Modelling the formation of organic particles in the atmosphere , 2003 .

[30]  I. Riipinen,et al.  Aerosol size distribution measurements at four Nordic field stations: identification, analysis and trajectory analysis of new particle formation bursts , 2007 .

[31]  K. Lehtinen,et al.  On the existence of neutral atmospheric clusters , 2005 .

[32]  K. Lehtinen,et al.  A model for particle formation and growth in the atmosphere with molecular resolution in size , 2002 .

[33]  R. Leuning,et al.  Formation and characteristics of ions and charged aerosol particles in a native Australian Eucalypt forest , 2007 .

[34]  T. Petäjä,et al.  Detecting charging state of ultrafine particles : instrumental development and ambient measurements , 2006 .

[35]  G. Brasseur,et al.  Model of tropospheric ion composition : A first attempt , 2000 .

[36]  M. Kulmala,et al.  Clouds without supersaturation , 1997, Nature.

[37]  F. J. Cox,et al.  Formation of oligomers in secondary organic aerosol. , 2004, Environmental science & technology.

[38]  J. Seinfeld,et al.  The relationship between DMS flux and CCN concentration in remote marine regions , 1994 .

[39]  Heinz Fissan,et al.  Design and evaluation of a nanometer aerosol differential mobility analyzer (Nano-DMA) , 1998 .

[40]  J. M. Mäkelä,et al.  On the formation, growth and composition of nucleation mode particles , 2001 .

[41]  C. O'Dowd,et al.  On the photochemical production of new particles in the coastal boundary layer , 1999 .

[42]  J. Smith,et al.  Contribution of ion‐induced nucleation to new particle formation: Methodology and its application to atmospheric observations in Boulder, Colorado , 2006 .

[43]  J. Smith,et al.  Hygroscopicity and volatility of 4-10 nm particles during summertime atmospheric nucleation events in urban Atlanta , 2005 .

[44]  A. Clarke Atmospheric nuclei in the Pacific midtroposphere: Their nature, concentration, and evolution , 1993 .

[45]  L. G. Macdowell Formal study of nucleation as described by fluctuation theory , 2003 .

[46]  M. Pihlatie,et al.  Sulphuric acid closure and contribution to nucleation mode particle growth , 2004 .

[47]  Pasi Aalto,et al.  Aerosol formation: Atmospheric particles from organic vapours , 2002, Nature.

[48]  S. Jones,et al.  On the effective measurement frequency of TDR in dispersive and non-conductive dielectric materials , 2005 .

[49]  M. Kulmala,et al.  Annual and size dependent variation of growth rates and ion concentrations in boreal forest , 2005 .

[50]  K. Lehtinen,et al.  Effect of condensation rate enhancement factor on 3‐nm (diameter) particle formation in binary ion‐induced and homogeneous nucleation , 2003 .

[51]  Liisa Pirjola,et al.  Winter and summer time size distributions and densities of traffic-related aerosol particles at a busy highway in Helsinki , 2006 .

[52]  Gilmore J. Sem,et al.  Design and performance characteristics of three continuous-flow condensation particle counters: a summary , 2002 .

[53]  Liisa Pirjola,et al.  Characteristics of the atmospheric particle formation events observed at a borel forest site in southern Finland , 2000 .

[54]  M. Stolzenburg,et al.  A Method for Particle Size Amplification by Water Condensation in a Laminar, Thermally Diffusive Flow , 2005 .

[55]  M. Lazaridis,et al.  Binary heterogeneous nucleation at a non-uniform surface , 1992 .

[56]  A. C. Zettlemoyer,et al.  Homogeneous Nucleation Theory , 1974 .

[57]  U. Baltensperger,et al.  Identification of Polymers as Major Components of Atmospheric Organic Aerosols , 2004, Science.

[58]  Reinhold Reiter,et al.  Electrical Processes in Atmospheres , 1977 .

[59]  S. Warren,et al.  Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate , 1987, Nature.

[60]  H. Lihavainen,et al.  Observations of ultrafine aerosol particle formation and growth in boreal forest , 1997 .

[61]  K. Lehtinen,et al.  Charging state of the atmospheric nucleation mode : Implications for separating neutral and ion-induced nucleation , 2007 .

[62]  Liisa Pirjola,et al.  Can new particle formation occur in the clean marine boundary layer , 2000 .

[63]  Hannes Tammet,et al.  Finnish-Estonian air ion and aerosol workshops , 2007 .

[64]  C. Seigneur,et al.  Investigative modeling of new pathways for secondary organic aerosol formation , 2007 .

[65]  M. Kulmala How Particles Nucleate and Grow , 2003, Science.

[66]  J. Seinfeld,et al.  Ternary nucleation of H2SO4, NH3, and H2O in the atmosphere , 1999 .

[67]  M. Kulmala,et al.  Rapid Formation of Sulfuric Acid Particles at Near-Atmospheric Conditions , 2005, Science.

[68]  P. Mcmurry,et al.  New Particle Formation in the Remote Troposphere: A Comparison of Observations at Various Sites , 1999 .

[69]  L. Pirjola,et al.  Sulfate aerosol formation in the Arctic boundary layer , 1998 .

[70]  Jiwen Fan,et al.  Contribution of secondary condensable organics to new particle formation: A case study in Houston, Texas , 2006 .

[71]  Ernest Weingartner,et al.  A mobile pollutant measurement laboratory—measuring gas phase and aerosol ambient concentrations with high spatial and temporal resolution , 2002 .

[72]  Shao-Meng Li,et al.  Organosulfate formation during the uptake of pinonaldehyde on acidic sulfate aerosols , 2006 .

[73]  I. Riipinen,et al.  The condensation particle counter battery (CPCB): A new tool to investigate the activation properties of nanoparticles , 2007 .

[74]  Yrjö Viisanen,et al.  Direct observational evidence linking atmospheric aerosol formation and cloud droplet activation , 2005 .

[75]  C. N. Hewitt,et al.  A dedicated study of new particle formation and fate in the coastal environment (PARFORCE): overview of objectives and achievements , 2002 .

[76]  M. D. Maso,et al.  The contribution of sulphuric acid to atmospheric particle formation and growth: a comparison between boundary layers in Northern and Central Europe , 2005 .

[77]  M. Wendisch,et al.  Night-time formation and occurrence of new particles associated with orographic clouds , 1997 .

[78]  F. Yu,et al.  Uptake of neutral polar vapor molecules by charged clusters/particles: Enhancement due to dipole‐charge interaction , 2003 .

[79]  Markku Kulmala,et al.  Parameterization for Atmospheric New-Particle Formation: Application to a System Involving Sulfuric Acid and Condensable Water-Soluble Organic Vapors , 2004 .

[80]  B. Anderson,et al.  Global distribution and sources of volatile and nonvolatile aerosol in the remote troposphere , 2002 .

[81]  A. Wiedensohler,et al.  New particle formation in the continental boundary layer: Meteorological and gas phase parameter influence , 2000 .

[82]  G. Mann,et al.  The contribution of boundary layer nucleation events to total particle concentrations on regional and global scales , 2006 .

[83]  Laaksonen,et al.  Surfactant effects and an order-disorder transition in binary gas-liquid nucleation , 2000, Physical review letters.

[84]  Dennis D. Baldocchi,et al.  Response of a Deciduous Forest to the Mount Pinatubo Eruption: Enhanced Photosynthesis , 2003, Science.

[85]  J. Bricard,et al.  Formation and properties of neutral ultrafine particles and small ions conditioned by gaseous impurities of the air , 1972 .

[86]  S. Borrmann,et al.  Characterization of an Automated, Water-Based Expansion Condensation Nucleus Counter for Ultrafine Particles , 2005 .

[87]  R. Turco,et al.  Ultrafine aerosol formation via ion‐mediated nucleation , 2000 .

[88]  M. Väkevä,et al.  Hygroscopic properties and state of mixing of nucleation mode particles , 2001 .

[89]  Y. Viisanen,et al.  Experiments on gas–liquid nucleation of sulfuric acid and water , 1997 .

[90]  M. Kulmala,et al.  Analytical formulae connecting the “real” and the “apparent” nucleation rate and the nuclei number concentration for atmospheric nucleation events , 2002 .

[91]  Ü. Rannik,et al.  Overview of the international project on biogenic aerosol formation in the boreal forest (BIOFOR) , 2001 .

[92]  L. Pirjola,et al.  How significantly does coagulational scavenging limit atmospheric particle production , 2001 .

[93]  L. A. Sgro,et al.  A Simple Turbulent Mixing CNC for Charged Particle Detection Down to 1.2 nm , 2004 .

[94]  Pasi Aalto,et al.  Atmospheric Chemistry and Physics on the Growth of Nucleation Mode Particles: Source Rates of Condensable Vapor in Polluted and Clean Environments , 2022 .

[95]  A. Wexler,et al.  Marine particle nucleation: Observation at Bodega Bay, California , 2005 .

[96]  K. Lehtinen,et al.  Measurements in a highly polluted Asian mega city: observations of aerosol number size distribution, modal parameters and nucleation events , 2004 .

[97]  J. Putaud,et al.  Nucleation and growth of new particles in the rural atmosphere of Northern Italy—relationship to air quality monitoring , 2005 .

[98]  M. Facchini,et al.  Cloud condensation nucleus production from nucleation events at a highly polluted region , 2005 .

[99]  H. Lihavainen,et al.  Airborne measurements of nucleation mode particles I: coastal nucleation and growth rates , 2006 .

[100]  W. Birmili,et al.  The Hohenpeissenberg aerosol formation experiment (HAFEX): a long-term study including size-resolved aerosol, H 2 SO 4 , OH, and monoterpenes measurements , 2002 .

[101]  Andrey Khlystov,et al.  Nucleation Events During the Pittsburgh Air Quality Study: Description and Relation to Key Meteorological, Gas Phase, and Aerosol Parameters Special Issue of Aerosol Science and Technology on Findings from the Fine Particulate Matter Supersites Program , 2004 .

[102]  J. Smith,et al.  Atmospheric Measurements of Sub-20 nm Diameter Particle Chemical Composition by Thermal Desorption Chemical Ionization Mass Spectrometry , 2004 .

[103]  L. Pirjola,et al.  Development of particle size and composition distributions with a novel aerosol dynamics model , 2001 .

[104]  David B. Kittelson,et al.  Nanoparticle emissions on Minnesota highways , 2004 .

[105]  B. Wehner,et al.  ‘How to find bananas in the atmospheric aerosol’: new approach for analyzing atmospheric nucleation and growth events , 2007 .

[106]  Ari Laaksonen,et al.  Analysis of the growth of nucleation mode particles observed in Boreal forest , 1998 .

[107]  C. Stanier,et al.  Modeling of in situ ultrafine atmospheric particle formation in the eastern United States , 2005 .

[108]  I. Ford,et al.  Critical cluster size and droplet nucleation rate from growth and decay simulations of Lennard-Jones clusters , 2000 .

[109]  Maria Cristina Facchini,et al.  Nucleation and growth of new particles in Po Valley, Italy , 2006 .

[110]  J. Seinfeld,et al.  Marine aerosol formation from biogenic iodine emissions , 2002, Nature.

[111]  C. O'Dowd,et al.  Physical characterization of aerosol particles during nucleation events , 2001 .

[112]  H. L. Miller,et al.  Climate Change 2007: The Physical Science Basis , 2007 .

[113]  T. Petäjä,et al.  Non-volatile residuals of newly formed atmospheric particles in the boreal forest , 2006 .

[114]  K. Lehtinen,et al.  Estimating nucleation rates from apparent particle formation rates and vice versa: Revised formulation of the Kerminen–Kulmala equation , 2007 .

[115]  Cheol-Heon Jeong,et al.  Characteristics of nucleation and growth events of ultrafine particles measured in Rochester, NY. , 2004, Environmental science & technology.

[116]  J. Aitken SOME NUCLEI OF CLOUDY CONDENSATION , 1917 .

[117]  K. T. Whitby,et al.  Aerosol classification by electric mobility: apparatus, theory, and applications , 1975 .

[118]  E. Atlas,et al.  Particle growth in urban and industrial plumes in Texas , 2003 .

[119]  D. Oxtoby Homogeneous nucleation: theory and experiment , 1992 .

[120]  Peter H. McMurry,et al.  An Ultrafine Aerosol Condensation Nucleus Counter , 1991 .

[121]  I. Riipinen,et al.  Toward Direct Measurement of Atmospheric Nucleation , 2007, Science.

[122]  C. Pilinis,et al.  Modeling New Particle Formation During Air Pollution Episodes: Impacts on Aerosol and Cloud Condensation Nuclei , 2006 .

[123]  Ari Laaksonen,et al.  Effect of particle phase oligomer formation on aerosol growth , 2007 .

[124]  A. Luts,et al.  Observed and simulated effects of certain pollutants on small air ion spectra: I. Positive ions , 2004 .

[125]  A. Wexler,et al.  The occurrence of sulfuric acid‐water nucleation in plumes: urban environment , 1996 .

[126]  H. Hansson,et al.  High Natural Aerosol Loading over Boreal Forests , 2006, Science.

[127]  Richard C. Flagan,et al.  Scanning Electrical Mobility Spectrometer , 1989 .

[128]  M. Kulmala,et al.  Stable ammonium bisulfate clusters in the atmosphere. , 2004, Physical review letters.

[129]  B. Verheggen,et al.  An inverse modeling procedure to determine particle growth and nucleation rates from measured aerosol size distributions , 2006 .

[130]  P. Adams,et al.  Simulating the size distribution and chemical composition of ultrafine particles during nucleation events , 2006 .

[131]  Ari Laaksonen,et al.  Cluster activation theory as an explanation of the linear dependence between formation rate of 3nm particles and sulphuric acid concentration , 2006 .

[132]  Miikka Dal Maso,et al.  Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II, Hyytiälä, Finland , 2005 .

[133]  D. Revelle,et al.  MALTE – model to predict new aerosol formation in the lower troposphere , 2006 .

[134]  Sonia M. Kreidenweis,et al.  A study of new particle formation and growth involving biogenic and trace gas species measured during ACE 1 , 1998 .

[135]  Kari E. J. Lehtinen,et al.  Multicomponent aerosol dynamics model UHMA: model development and validation , 2004 .

[136]  M. Kulmala,et al.  Nucleation and atmospheric aerosols 2004 : 16th International Conference, Kyoto, Japan 2004 , 2004 .

[137]  T. Petäjä,et al.  The contribution of sulfuric acid and non‐volatile compounds on the growth of freshly formed atmospheric aerosols , 2005 .

[138]  Antony D. Clarke,et al.  Particle production in the remote marine atmosphere: Cloud outflow and subsidence during ACE 1 , 1998 .

[139]  A. Castleman,et al.  The properties of ion clusters and their relationship to heteromolecular nucleation , 1978 .

[140]  A. Goldstein,et al.  Characteristics of Fine Particle Growth Events Observed Above a Forested Ecosystem in the Sierra Nevada Mountains of California , 2006 .

[141]  M. Kulmala,et al.  A wide-range multi-channel Air Ion Spectrometer , 2007 .

[142]  T. Ogawa,et al.  Evolution of tropospheric ions observed by an ion mobility spectrometer with a drift tube , 1998 .

[143]  J. Smith,et al.  Measurements of Mexico City nanoparticle size distributions: Observations of new particle formation and growth , 2004 .

[144]  A. Wexler,et al.  A hypothesis for growth of fresh atmospheric nuclei , 2002 .

[145]  P. Quinn,et al.  Physical properties of marine boundary layer aerosol particles of the mid-Pacific in relation to sources and meteorological transport , 1996 .

[146]  Hanna Vehkamäki,et al.  Classical Nucleation Theory in Multicomponent Systems , 2006 .

[147]  F. Fehsenfeld,et al.  Particle growth in the plumes of coal‐fired power plants , 2002 .

[148]  J. Jensen,et al.  Observations of nighttime new particle formation in the troposphere , 2008 .

[149]  L. Morawska,et al.  Hygroscopic behavior of partially volatilized coastal marine aerosols using the volatilization and humidification tandem differential mobility analyzer technique , 2005 .

[150]  S. Friedlander Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics , 2000 .

[151]  Pasi Aalto,et al.  A new feedback mechanism linking forests, aerosols, and climate , 2003 .

[152]  Qi Zhang,et al.  Insights into the chemistry of new particle formation and growth events in Pittsburgh based on aerosol mass spectrometry. , 2004, Environmental science & technology.

[153]  Y. Viisanen,et al.  Homogeneous nucleation rates for water , 1993 .

[154]  U. Lohmann,et al.  Global indirect aerosol effects: a review , 2004 .

[155]  O. Hellmuth Columnar modelling of nucleation burst evolution in the convective boundary layer – first results from a feasibility study Part I: Modelling approach , 2006 .

[156]  K. Laasonen,et al.  Ab initio study of gas-phase sulphuric acid hydrates containing 1 to 3 water molecules , 1998 .

[157]  K. Froyd,et al.  Atmospheric ion‐induced nucleation of sulfuric acid and water , 2004 .

[158]  D. Tanner,et al.  Identification of ions in continental air , 1990 .

[159]  Peter H. McMurry,et al.  A review of atmospheric aerosol measurements , 2000 .

[160]  J. M. Reeves,et al.  Particle Formation by Ion Nucleation in the Upper Troposphere and Lower Stratosphere , 2003, Science.

[161]  Hanna Vehkamäki,et al.  Formation and growth rates of ultrafine atmospheric particles: a review of observations , 2004 .

[162]  R. Hillamo,et al.  Number size distributions and concentrations of the continental summer aerosols in Queen Maud Land, Antarctica , 2003 .

[163]  T. Petäjä,et al.  New particle formation in Beijing, China: Statistical analysis of a 1‐year data set , 2007 .

[164]  L. Pirjola,et al.  Stable sulphate clusters as a source of new atmospheric particles , 2000, Nature.

[165]  R. Kamens,et al.  Heterogeneous Atmospheric Aerosol Production by Acid-Catalyzed Particle-Phase Reactions , 2002, Science.

[166]  D. Lucas,et al.  Evaluating aerosol nucleation parameterizations in a global atmospheric model , 2006 .

[167]  Da-Ren Chen,et al.  Measurement of Atlanta Aerosol Size Distributions: Observations of Ultrafine Particle Events , 2001 .

[168]  Andreas Limbeck,et al.  Secondary organic aerosol formation in the atmosphere via heterogeneous reaction of gaseous isoprene on acidic particles , 2003 .

[169]  Fred Gelbard,et al.  A one-dimensional sectional model to simulate multicomponent aerosol dynamics in the marine boundary layer 1. Model description , 1998 .

[170]  J. D. de Gouw,et al.  Online volatile organic compound measurements using a newly developed proton-transfer ion-trap mass spectrometry instrument during New England Air Quality Study--Intercontinental Transport and Chemical Transformation 2004: performance, intercomparison, and compound identification. , 2005, Environmental science & technology.

[171]  R. Harrison,et al.  Factors influencing new particle formation at the rural site, Harwell, United Kingdom , 2007 .

[172]  P. Hari,et al.  Atmospheric particle formation events at Värriö measurement station in Finnish Lapland 1998-2002 , 2004 .

[173]  J. Joutsensaari,et al.  A method for detecting the presence of organic fraction in nucleation mode sized particles , 2005 .

[174]  A. Wexler,et al.  Secondary organics and atmospheric cloud condensation nuclei production , 2000 .

[175]  Pasi Aalto,et al.  The particle detection efficiency of the TSI-3007 condensation particle counter , 2002 .

[176]  Dimo Kashchiev,et al.  Nucleation : basic theory with applications , 2000 .

[177]  M. Misaki Mobility spectrums of large ions in the New Mexico semidesert , 1964 .

[178]  D. Kashchiev On the relation between nucleation work, nucleus size, and nucleation rate , 1982 .

[179]  D. Oxtoby,et al.  A general relation between the nucleation work and the size of the nucleus in multicomponent nucleation , 1994 .

[180]  A. Wiedensohler,et al.  DESIGN OF A DMA-BASED SIZE SPECTROMETER FOR A LARGE PARTICLE SIZE RANGE AND STABLE OPERATION , 1999 .

[181]  M. Komppula,et al.  Production of “potential” cloud condensation nuclei associated with atmospheric new‐particle formation in northern Finland , 2003 .

[182]  A. Northcross,et al.  Semiempirical model for organic aerosol growth by acid-catalyzed heterogeneous reactions of organic carbonyls. , 2005, Environmental science & technology.

[183]  D. Worsnop,et al.  Size and composition measurements of background aerosol and new particle growth in a Finnish forest during QUEST 2 using an Aerodyne Aerosol Mass Spectrometer , 2005 .