The features of combustion and structure formation of ceramic materials in the Cr–Al–Si–B system

[1]  E. Levashov,et al.  Self-propagating high-temperature synthesis of advanced ceramics in the Mo–Si–B system: Kinetics and mechanism of combustion and structure formation , 2014 .

[2]  R. Kayikci,et al.  A Taguchi optimisation for production of Al-B master alloys using boron oxide , 2013 .

[3]  B. Wang,et al.  Phase stability and elastic properties of chromium borides with various stoichiometries. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[4]  J. Keckes,et al.  Influence of AlN layers on mechanical properties and thermal stability of Cr-based nitride coatings , 2013 .

[5]  A. Matthews,et al.  Impact wear and abrasion resistance of CrN, AlCrN and AlTiN PVD coatings , 2013 .

[6]  E. Levashov,et al.  SHS in mechanically activated Cr-B and Ti-Cr-B blends: Role of gas-transport reactions , 2012, International Journal of Self-Propagating High-Temperature Synthesis.

[7]  E. Levashov,et al.  Hard Cr-Al-Si-B-(N) coatings with oxidation resistance up to 1200°C , 2011 .

[8]  E. Levashov,et al.  Multicomponent nanostructured films for various tribological applications , 2010 .

[9]  A. K. Suri,et al.  Investigation on synthesis, pressureless sintering and hot pressing of chromium diboride , 2009 .

[10]  A. Merzhanov,et al.  Historical retrospective of SHS: An autoreview , 2008 .

[11]  E. Levashov,et al.  Combustion and structure formation in the mechanoactivated Cr-B system , 2008 .

[12]  V. Raghavan Al-Cr-Si (Aluminum-Chromium-Silicon) , 2008 .

[13]  F. V. Kiryukhantsev-Korneev,et al.  Effect of Al, Si, and Cr on the thermal stability and high-temperature oxidation resistance of coatings based on titanium boronitride , 2007 .

[14]  Honghui Xu,et al.  The isothermal section of the Al–Cr–Si system at 800 °C and the crystal structure of τ2 (Cr3Al9Si) , 2007 .

[15]  K. Kim,et al.  Microstructures, mechanical properties, and tribological behaviors of Cr–Al–N, Cr–Si–N, and Cr–Al–Si–N coatings by a hybrid coating system , 2007 .

[16]  H. Ohtani,et al.  Thermodynamic Assessment of the Al-Cr System by Combining the First Principles and CALPHAD Methods , 2007 .

[17]  Lars Hultman,et al.  Microstructural design of hard coatings , 2006 .

[18]  F. V. Kiryukhantsev-Korneev,et al.  Hard tribological Ti–B–N, Ti–Cr–B–N, Ti–Si–B–N and Ti–Al–Si–B–N coatings , 2005 .

[19]  S. Gupta Formation of intermetallic compounds in the Cr–Al–Si ternary system , 2004 .

[20]  A. A. Borisov,et al.  Self-Propagating High-Temperature Synthesis of Materials , 2002 .

[21]  T. Sviridova,et al.  Programs for X-ray analysis of polycrystals , 2000 .

[22]  P. Kelly,et al.  Magnetron sputtering: a review of recent developments and applications , 2000 .

[23]  A. G. Merzhanov,et al.  History and recent developments in SHS , 1995 .

[24]  T. Serebryakova,et al.  Interaction of chromium diboride with silicon at high temperatures , 1993 .