Semi-Automated Heavy-Mineral Analysis by Raman Spectroscopy

A significant amount of information on sedimentary provenance is encoded in the heavy minerals of a sediment or sedimentary rock. This information is commonly assessed by optically determining the heavy-mineral assemblage, potentially followed by geochemical and/or geochronological analysis of specific heavy minerals. The proposed method of semi-automated heavy-mineral analysis by Raman spectroscopy (Raman-HMA) aims to combine the objective mineral identification capabilities of Raman spectroscopy with high-resolution geochemical techniques applied to single grains. The Raman-HMA method is an efficient and precise tool that significantly improves the comparability of heavy-mineral data with respect to both overall assemblages and individual compositions within solid solution series. Furthermore, the efficiency of subsequent analysis is increased due to identification and spatial referencing of the heavy minerals in the sample slide. The method is tested on modern sediments of the Fulda river (central Germany) draining two Miocene volcanic sources (Vogelsberg, Rhön) resting on top of Lower Triassic siliciclastic sediments. The downstream evolution of the volcanic detritus is documented and the capability to analyze silt-sized grains has revealed an additional eolian source. This capability also poses the possibility of systematically assessing the heavy-mineral assemblages of shales, which are often disregarded in sedimentary provenance studies.

[1]  G. Mursky,et al.  A specific gravity index for minerals , 1958 .

[2]  E. Garzanti,et al.  Grain-size dependence of sediment composition and environmental bias in provenance studies , 2009 .

[3]  Margarita Osadchy,et al.  Deep Convolutional Neural Networks for Raman Spectrum Recognition: A Unified Solution , 2017, The Analyst.

[4]  Lutz Nasdala,et al.  Laser-induced REE3 + photoluminescence of selected accessory minerals — An “advantageous artefact” in Raman spectroscopy , 2015 .

[5]  F. Molnár,et al.  Estimation of radiation damage in titanites using Raman spectroscopy , 2019, American Mineralogist.

[6]  F. Harris On the use of windows for harmonic analysis with the discrete Fourier transform , 1978, Proceedings of the IEEE.

[7]  G. Wörner,et al.  Petrogenesis of Basanitic to Tholeiitic Volcanic Rocks from the Miocene Vogelsberg, Central Germany , 2003 .

[8]  P. P. Lottici,et al.  Raman spectroscopy of (Ca,Mg)MgSi2O6 clinopyroxenes , 2012 .

[9]  R. Tolosana-Delgado,et al.  Discrimination of TiO2 polymorphs in sedimentary and metamorphic rocks , 2011 .

[10]  G. Gehrels,et al.  What happens when n= 1000? Creating large-n geochronological datasets with LA-ICP-MS for geologic investigations , 2014 .

[11]  Monika Hanesch,et al.  Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies , 2009 .

[12]  Andrew C. Morton,et al.  Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones , 1994 .

[13]  M. Morhác,et al.  Peak Clipping Algorithms for Background Estimation in Spectroscopic Data , 2008, Applied spectroscopy.

[14]  S. Andò,et al.  Diagenetic control on mineralogical suites in sand, silt, and mud (Cenozoic Nile Delta): Implications for provenance reconstructions , 2018, Earth-Science Reviews.

[15]  E. Krogstad,et al.  Interpretation of discordant U‐Pb zircon ages: An evaluation , 1997 .

[16]  Eduardo Garzanti,et al.  Raman spectroscopy in heavy-mineral studies , 2013 .

[17]  P. Tannenwald,et al.  Temperature Dependence of Raman Linewidth and Shift inα-Quartz , 1969 .

[18]  W. Pryor Petrology of the Weissliegendes sandstones in the Harz and Werra-Fulda areas, Germany , 1971 .

[19]  Arthur Okrajek Sedimentpetrographische Untersuchung toniger und sandiger Lagen des Mittleren Buntsandsteins in Bohrungen und Tagesaufschlüssen Süd-Niedersachsens , 1965 .

[20]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[21]  Andrew C. Morton,et al.  Processes controlling the composition of heavy mineral assemblages in sandstones , 1999 .

[22]  C.-H. Chen,et al.  Raman spectroscopic characteristics of Mg-Fe-Ca pyroxenes , 2000 .

[23]  B. Mihailova,et al.  Exploring the potential of Raman spectroscopy for crystallochemical analyses of complex hydrous silicates: I. Amphiboles , 2015 .

[24]  W. Fleet Petrological Notes on the Old Red Sandstone of the West Midlands , 1926, Geological Magazine.

[25]  Shiv k. Sharma,et al.  Instrumentation in Raman spectroscopy: elementary theory and practice , 2012 .

[26]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[27]  D. Többens,et al.  A Raman spectroscopic study on the structural disorder of monazite–(Ce) , 2012, Mineralogy and Petrology.

[28]  J. P. Le Roux,et al.  Settling velocity of ellipsoidal grains as related to shape entropy , 1996 .

[29]  A. Poldervaart Correlation of physical properties and chemical composition in the plagioclase, olivine, and orthopyroxene series , 1950 .

[30]  B. Ficke Petrologische Untersuchungen an tertiären basaltischen bis phonolithischen Vulkaniten der Rhön , 1961 .

[31]  P. Vandenabeele,et al.  Raman mapping of coesite inclusions in garnet from the Kokchetav Massif (Northern Kazakhstan). , 2007, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[32]  Peter L. Bartlett,et al.  Boosting Algorithms as Gradient Descent , 1999, NIPS.

[33]  G. Weltje,et al.  Quantitative provenance analysis of sediments: review and outlook , 2004 .

[34]  Danilo Bersani,et al.  Micro-Raman spectroscopy as a routine tool for garnet analysis. , 2009, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[35]  S. Andò,et al.  Settling equivalence of detrital minerals and grain-size dependence of sediment composition , 2008 .

[36]  G. Meinhold,et al.  Diamond and coesite inclusions in detrital garnet of the Saxonian Erzgebirge, Germany , 2019, Geology.

[37]  S. Gialanella,et al.  On the goethite to hematite phase transformation , 2010 .

[38]  J. Kauffman,et al.  Quantitative evaluation of the sensitivity of library-based Raman spectral correlation methods. , 2011, Analytical chemistry.

[39]  Nils Keno Lünsdorf,et al.  Evaluating Raman spectra of carbonaceous matter by automated, iterative curve-fitting , 2016 .

[40]  Robert T. Downs,et al.  The power of databases: The RRUFF project , 2016 .

[41]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[42]  I. Dunkl,et al.  Assessing the sediment factory: The role of single grain analysis , 2012 .

[43]  Cardona Alzate,et al.  Predicción y selección de variables con bosques aleatorios en presencia de variables correlacionadas , 2020 .

[44]  T. Wenzel,et al.  Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage , 2001 .

[45]  P. Vermeesch How many grains are needed for a provenance study , 2004 .

[46]  E. Garzanti,et al.  Raman counting: a new method to determine provenance of silt , 2011 .

[47]  A. Chopelas,et al.  Single crystal Raman spectra of forsterite, fayalite, and monticellite , 1991 .

[48]  B. Jolliff,et al.  Extracting olivine (Fo–Fa) compositions from Raman spectral peak positions , 2006 .

[49]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  D. Montgomery,et al.  Physical abrasion of mafic minerals and basalt grains: Application to martian aeolian deposits , 2015 .

[51]  Paul D. Komar,et al.  Grain Shape Effects on Settling Rates , 1978, The Journal of Geology.

[52]  Richard L. McCreery,et al.  Raman Spectroscopy for Chemical Analysis , 2000 .

[53]  David C. Smith The RAMANITA method for non-destructive and in situ semi-quantitative chemical analysis of mineral solid-solutions by multidimensional calibration of Raman wavenumber shifts. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[54]  R. Kaindl,et al.  Raman spectroscopy: Analytical perspectives in mineralogical research , 2004 .

[55]  E. Garzanti,et al.  Corrosion of heavy minerals during weathering and diagenesis: A catalog for optical analysis , 2012 .

[56]  W. Seifert,et al.  Thermal evolution of the mantle underneath the Mid-German crystalline rise: Evidence from mantle xenoliths from the Rhön area (Central Germany) , 1997 .

[57]  D. Faria,et al.  Heated goethite and natural hematite: Can Raman spectroscopy be used to differentiate them? , 2007 .

[58]  Andrew Steele,et al.  Raman Spectroscopy and Confocal Raman Imaging in Mineralogy and Petrography , 2010 .

[59]  B. Mihailova,et al.  Exploring the potential of Raman spectroscopy for crystallochemical analyses of complex hydrous silicates: II. Tourmalines , 2015 .

[60]  Alexander J. Smola,et al.  Support Vector Regression Machines , 1996, NIPS.

[61]  Jürgen Popp,et al.  Checking and Improving Calibration of Raman Spectra using Chemometric Approaches , 2011 .

[62]  M. Kohn “Thermoba-Raman-Try”: Calibration of Spectroscopic Barometers and Thermometers for Mineral Inclusions , 2014 .

[63]  D. R. Cousens,et al.  SNIP, A STATISTICS-SENSITIVE BACKGROUND TREATMENT FOR THE QUANTITATIVE-ANALYSIS OF PIXE SPECTRA IN GEOSCIENCE APPLICATIONS , 1988 .

[64]  B. Jolliff,et al.  Characterization and comparison of structural and compositional features of planetary quadrilateral pyroxenes by Raman spectroscopy , 2001 .

[65]  J. Popp,et al.  Raman data analysis , 2012 .

[66]  S. Brantley,et al.  Chemical weathering rates of pyroxenes and amphiboles , 1995 .

[67]  Katherine L. Smith,et al.  Weathering of Basalt: Formation of Iddingsite , 1987 .

[68]  T. Zack,et al.  Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer , 2004 .

[69]  R. Tolosana-Delgado,et al.  Sediment generation in humid Mediterranean setting: Grain-size and source-rock control on sediment geochemistry and mineralogy (Sila Massif, Calabria) , 2016 .