Fictitious Domain approach with hp-finite element approximation for incompressible fluid flow

We consider the application of Fictitious Domain approach combined with least squares spectral elements for the numerical solution of fluid dynamic incompressible equations. Fictitious Domain methods allow problems formulated on a complicated shaped domain ? to be solved on a simpler domain ? containing ? . Least Squares Spectral Element Method has been used to develop the discrete model, as this scheme combines the generality of finite element methods with the accuracy of spectral methods. Moreover the least squares methods have theoretical and computational advantages in the algorithmic design and implementation. This paper presents the formulation and validation of the Fictitious Domain Least Squares Spectral Element approach for the steady incompressible Navier-Stokes equations. The convergence of the approximated solution is verified solving two-dimensional benchmark problems, demonstrating the predictive capability of the proposed formulation.

[1]  W. Shyy,et al.  Regular Article: An Accurate Cartesian Grid Method for Viscous Incompressible Flows with Complex Immersed Boundaries , 1999 .

[2]  Pavel B. Bochev,et al.  Finite Element Methods of Least-Squares Type , 1998, SIAM Rev..

[3]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[4]  D. Komatitsch,et al.  The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures , 1998, Bulletin of the Seismological Society of America.

[5]  Helio J. C. Barbosa,et al.  The finite element method with Lagrange multiplier on the boundary: circumventing the Babuscka-Brezzi condition , 1991 .

[6]  Valentino Pediroda,et al.  Investigation of Multi Geometric Uncertainties by Different Polynomial Chaos Methodologies Using a Fictitious Domain Solver , 2008 .

[7]  X. Sheldon Wang,et al.  From Immersed Boundary Method to Immersed Continuum Methods , 2006 .

[8]  D. Gartling A test problem for outflow boundary conditions—flow over a backward-facing step , 1990 .

[9]  Raino A. E. Mäkinen,et al.  A moving mesh fictitious domain approach for shape optimization problems , 2000 .

[10]  Tim Lee,et al.  Experimental and numerical investigation of 2-D backward-facing step flow , 1998 .

[11]  Dong Liu,et al.  Spectral distributed Lagrange multiplier method: algorithm and benchmark tests , 2004 .

[12]  R. Glowinski,et al.  A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations , 1994 .

[13]  Valentino Pediroda,et al.  Fictitious Domain with Least-Squares Spectral Element Method to Explore Geometric Uncertainties by Non-Intrusive Polynomial Chaos Method , 2007 .

[14]  Lucia Parussini Fictitious Domain Approach Via Lagrange Multipliers with Least Squares Spectral Element Method , 2008, J. Sci. Comput..

[15]  R. Glowinski,et al.  A distributed Lagrange multiplier/fictitious domain method for particulate flows , 1999 .

[16]  Stuart E. Rogers,et al.  Upwind differencing scheme for the time-accurate incompressible Navier-Stokes equations , 1990 .

[17]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[18]  P. Moin,et al.  Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations , 1984 .

[19]  A. S. Grove,et al.  An experimental investigation of the steady separated flow past a circular cylinder , 1964, Journal of Fluid Mechanics.

[20]  Yuri A. Kuznetsov,et al.  Fictitious Domain Methods For The Numerical Solution Of Three-Dimensional Acoustic Scattering Proble , 1999 .

[21]  Zhaosheng Yu A DLM/FD method for fluid/flexible-body interactions , 2005 .

[22]  B. Fornberg A numerical study of steady viscous flow past a circular cylinder , 1980, Journal of Fluid Mechanics.

[23]  Lucy T. Zhang,et al.  Immersed finite element method , 2004 .

[24]  P. Roache Fundamentals of computational fluid dynamics , 1998 .

[25]  Bertrand Maury,et al.  A Fat Boundary Method for the Poisson Problem in a Domain with Holes , 2002, J. Sci. Comput..

[26]  Juhani Pitkäranta,et al.  Boundary subspaces for the finite element method with Lagrange multipliers , 1979 .

[27]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[28]  Michael M. J. Proot,et al.  A Least-Squares Spectral Element Formulation for the Stokes Problem , 2002, J. Sci. Comput..

[29]  R. B. Lehoucq,et al.  Regularization and stabilization of discrete saddle-point variational problems. , 2006 .

[30]  Hideo Takami,et al.  Steady Two‐Dimensional Viscous Flow of an Incompressible Fluid past a Circular Cylinder , 1969 .

[31]  Claudio Canuto,et al.  A fictitious domain approach to the numerical solution of PDEs in stochastic domains , 2007, Numerische Mathematik.

[32]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[33]  M. D. Olson,et al.  Numerical studies of the flow around a circular cylinder by a finite element method , 1978 .

[34]  S. Dennis,et al.  Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100 , 1970, Journal of Fluid Mechanics.

[35]  J. N. Reddy,et al.  Spectral/ hp least-squares finite element formulation for the Navier-Stokes equations , 2003 .

[36]  Franco Brezzi Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods (Springer Series in Computational Mathematics) , 1991 .

[37]  C. Wieselsberger New Data on the Laws of Fluid Resistance , 1922 .

[38]  Jaroslav Haslinger,et al.  FICTITIOUS DOMAINS METHODS WITH DISTRIBUTED LAGRANGE MULTIPLIERS PART I: APPLICATION TO THE SOLUTION OF ELLIPTIC STATE PROBLEMS , 2001 .

[39]  Charbel Farhat,et al.  A fictitious domain decomposition method for the solution of partially axisymmetric acoustic scattering problems. Part 2: Neumann boundary conditions , 2002 .

[40]  R. Bouard,et al.  Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow , 1977, Journal of Fluid Mechanics.

[41]  H. B. Keller,et al.  Viscous flow past circular cylinders , 1973 .

[42]  J. L. Sohn,et al.  Evaluation of FIDAP on some classical laminar and turbulent benchmarks. [FluId Dynamics Analysis Package , 1988 .

[43]  R. Glowinski,et al.  Error analysis of a fictitious domain method applied to a Dirichlet problem , 1995 .

[44]  Athanasios Scarpas,et al.  Spectral Element Approach for Forward Models of 3D Layered Pavement , 2006 .

[45]  Rolf Stenberg,et al.  On some techniques for approximating boundary conditions in the finite element method , 1995 .

[46]  B. Armaly,et al.  Experimental and theoretical investigation of backward-facing step flow , 1983, Journal of Fluid Mechanics.

[47]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[48]  M. Berger,et al.  An Adaptive Version of the Immersed Boundary Method , 1999 .

[49]  R. Glowinski,et al.  A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow , 2001 .

[50]  Charles S. Peskin,et al.  Modeling Arteriolar Flow and Mass Transport Using the Immersed Boundary Method , 1998 .

[51]  M. Braza,et al.  Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder , 1986, Journal of Fluid Mechanics.

[52]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[53]  S. C. R. Dennis The numerical solution of the vorticity transport equation , 1973 .

[54]  Philippe Angot,et al.  Fictitious domain methods to solve convection-diffusion problems with general boundary conditions , 2005 .

[55]  F. Baaijens A fictitious domain/mortar element method for fluid-structure interaction , 2001 .

[56]  Randall J. LeVeque,et al.  Immersed Interface Methods for Stokes Flow with Elastic Boundaries or Surface Tension , 1997, SIAM J. Sci. Comput..

[57]  D. Tritton Experiments on the flow past a circular cylinder at low Reynolds numbers , 1959, Journal of Fluid Mechanics.

[58]  Lucia Parussini,et al.  Fictitious Domain Approach for Spectral/hp Element Method , 2007 .