An adaptive sliding mode control scheme for induction motor drives

An adaptive sliding-mode control system, which is insensitive to uncertainties, is proposed to control the position of an induction motor drive. The designed sliding mode control presents an adaptive switching gain to relax the requirement for the bound of uncertainties. The switching gain is adapted using a simple algorithm which do not implies a high computational load. Stability analysis based on Lyapunov theory is also performed in order to guarantee the closed loop stability. Finally simulation results show, on the one hand that the proposed controller provides high-performance dynamic characteristics, and on the other hand that this scheme is robust with respect to plant parameter variations and external load disturbances.