P. falciparum K13 mutations present varying degrees of artemisinin resistance and reduced fitness in African parasites

The emergence of artemisinin (ART) resistance in Plasmodium falciparum parasites, driven by K13 mutations, has led to widespread antimalarial treatment failure in Southeast Asia. In Africa, our genotyping of 3,299 isolates confirms the emergence of the K13 R561H variant in Rwanda and reveals the continuing dominance of wild-type K13 across 11 countries. We show that this mutation, along with M579I and C580Y, confers varying degrees of in vitro ART resistance in African parasites. C580Y and M579I cause substantial fitness costs, which may counter-select against their dissemination in high-transmission settings. We also define the impact of multiple K13 mutations on ART resistance and fitness in multiple Southeast Asian strains. ART susceptibility is unaltered upon editing point mutations in ferrodoxin or mdr2, earlier resistance markers. These data point to the lack of an evident biological barrier to mutant K13 mediating ART resistance in Africa, while identifying their detrimental impact on parasite growth.

[1]  J. Bailey,et al.  Changing Prevalence of Potential Mediators of Aminoquinoline, Antifolate, and Artemisinin Resistance Across Uganda. , 2020, The Journal of infectious diseases.

[2]  N. Speybroeck,et al.  Spatial and molecular mapping of Pfkelch13 gene polymorphism in Africa in the era of emerging Plasmodium falciparum resistance to artemisinin: a systematic review. , 2020, The Lancet. Infectious diseases.

[3]  C. Sutherland,et al.  Artemisinin susceptibility in the malaria parasite Plasmodium falciparum: propellers, adaptor proteins and the need for cellular healing , 2020, FEMS microbiology reviews.

[4]  Hannah C. Slater,et al.  The potential public health consequences of COVID-19 on malaria in Africa , 2020, Nature Medicine.

[5]  D. Fidock,et al.  Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda , 2020, Nature Medicine.

[6]  D. Kwiatkowski,et al.  Molecular epidemiology of resistance to antimalarial drugs in the Greater Mekong subregion: an observational study , 2020, The Lancet. Infectious diseases.

[7]  D. Fidock,et al.  Local emergence in Amazonia of Plasmodium falciparum k13 C580Y mutants associated with in vitro artemisinin resistance , 2020, eLife.

[8]  N. White,et al.  Advances and roadblocks in the treatment of malaria , 2020, British journal of clinical pharmacology.

[9]  E. Legrand,et al.  Molecular assessment of kelch13 non-synonymous mutations in Plasmodium falciparum isolates from Central African Republic (2017–2019) , 2020, Malaria Journal.

[10]  L. Cui,et al.  Role of Plasmodium falciparum Kelch 13 Protein Mutations in P. falciparum Populations from Northeastern Myanmar in Mediating Artemisinin Resistance , 2020, mBio.

[11]  B. Bergmann,et al.  A Kelch13-defined endocytosis pathway mediates artemisinin resistance in malaria parasites , 2020, Science.

[12]  S. Ralph,et al.  Decreased K13 Abundance Reduces Hemoglobin Catabolism and Proteotoxic Stress, Underpinning Artemisinin Resistance. , 2019, Cell reports.

[13]  D. V. van Schalkwyk,et al.  Modification of pfap2μ and pfubp1 Markedly Reduces Ring-Stage Susceptibility of Plasmodium falciparum to Artemisinin In Vitro , 2019, Antimicrobial Agents and Chemotherapy.

[14]  P. Rosenthal,et al.  Antimalarial drug resistance in Africa: the calm before the storm? , 2019, The Lancet. Infectious diseases.

[15]  Richard J Maude,et al.  Determinants of dihydroartemisinin-piperaquine treatment failure in Plasmodium falciparum malaria in Cambodia, Thailand, and Vietnam: a prospective clinical, pharmacological, and genetic study , 2019, The Lancet. Infectious diseases.

[16]  D. Kwiatkowski,et al.  Emergence of artemisinin-resistant Plasmodium falciparum with kelch13 C580Y mutations on the island of New Guinea , 2019, bioRxiv.

[17]  N. Khim,et al.  High therapeutic efficacy of artemether–lumefantrine and dihydroartemisinin–piperaquine for the treatment of uncomplicated falciparum malaria in Somalia , 2019, Malaria Journal.

[18]  Sabyasachi Das,et al.  Novel pfkelch13 gene polymorphism associates with artemisinin resistance in eastern India. , 2018, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[19]  D. Hartl,et al.  Mutations in Plasmodium falciparum actin-binding protein coronin confer reduced artemisinin susceptibility , 2018, Proceedings of the National Academy of Sciences.

[20]  Pradipsinh K Rathod,et al.  Identification and Mechanistic Understanding of Dihydroorotate Dehydrogenase Point Mutations in Plasmodium falciparum that Confer in Vitro Resistance to the Clinical Candidate DSM265. , 2018, ACS infectious diseases.

[21]  M. Lemnge,et al.  Efficacy and safety of artemisinin-based combination therapy, and molecular markers for artemisinin and piperaquine resistance in Mainland Tanzania , 2018, Malaria Journal.

[22]  D. Ménard,et al.  Efficacy of artemisinin-based combination therapies and prevalence of molecular markers associated with artemisinin, piperaquine and sulfadoxine-pyrimethamine resistance in Sierra Leone , 2018, Acta tropica.

[23]  D. Fidock,et al.  Emerging Southeast Asian PfCRT mutations confer Plasmodium falciparum resistance to the first-line antimalarial piperaquine , 2018, Nature Communications.

[24]  F. Nosten,et al.  A novel field-based molecular assay to detect validated artemisinin-resistant k13 mutants , 2018, Malaria Journal.

[25]  N. Duah,et al.  Prevalence of Plasmodium falciparum delayed clearance associated polymorphisms in adaptor protein complex 2 mu subunit (pfap2mu) and ubiquitin specific protease 1 (pfubp1) genes in Ghanaian isolates , 2018, Parasites & Vectors.

[26]  K. Haldar,et al.  Drug resistance in Plasmodium , 2018, Nature Reviews Microbiology.

[27]  Mehul Dhorda,et al.  The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion: a molecular epidemiology observational study , 2017, The Lancet. Infectious diseases.

[28]  D. Fidock,et al.  Plasmodium falciparum K13 Mutations Differentially Impact Ozonide Susceptibility and Parasite Fitness In Vitro , 2017, mBio.

[29]  A. Pain,et al.  Emergence of Indigenous Artemisinin-Resistant Plasmodium falciparum in Africa. , 2017, The New England journal of medicine.

[30]  François Nosten,et al.  Longitudinal genomic surveillance of Plasmodium falciparum malaria parasites reveals complex genomic architecture of emerging artemisinin resistance , 2017, Genome Biology.

[31]  Victoria C. Corey,et al.  UDP-galactose and Acetyl-CoA transporters as Plasmodium multidrug resistance genes , 2016, Nature Microbiology.

[32]  C. Rogier,et al.  A Worldwide Map of Plasmodium falciparum K13-Propeller Polymorphisms. , 2016, The New England journal of medicine.

[33]  Zbynek Bozdech,et al.  Declining Efficacy of Artemisinin Combination Therapy Against P. Falciparum Malaria on the Thai–Myanmar Border (2003–2013): The Role of Parasite Genetic Factors , 2016, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[34]  Jian Li,et al.  Limited artemisinin resistance-associated polymorphisms in Plasmodium falciparum K13-propeller and PfATPase6 gene isolated from Bioko Island, Equatorial Guinea , 2016, International journal for parasitology. Drugs and drug resistance.

[35]  D. Fidock,et al.  K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates , 2015, Science.

[36]  Gilean McVean,et al.  Genetic architecture of artemisinin-resistant Plasmodium falciparum , 2015, Nature Genetics.

[37]  J. Skarbinski,et al.  Return of widespread chloroquine-sensitive Plasmodium falciparum to Malawi. , 2014, The Journal of infectious diseases.

[38]  T. Clark,et al.  Directional Selection at the pfmdr1, pfcrt, pfubp1, and pfap2mu Loci of Plasmodium falciparum in Kenyan Children Treated With ACT , 2014, The Journal of infectious diseases.

[39]  C. MacPherson,et al.  Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system , 2014, Nature Biotechnology.

[40]  Saorin Kim,et al.  Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. , 2013, The Lancet. Infectious diseases.

[41]  Mark D. Johnson,et al.  Copy number variation detection in whole-genome sequencing data using the Bayesian information criterion , 2011, Proceedings of the National Academy of Sciences.

[42]  X. Su,et al.  Increased Tolerance to Artemisinin in Plasmodium falciparum Is Mediated by a Quiescence Mechanism , 2010, Antimicrobial Agents and Chemotherapy.

[43]  D. Socheat,et al.  Artemisinin-resistant malaria in Asia. , 2009, The New England journal of medicine.

[44]  K. Silamut,et al.  Artemisinin resistance in Plasmodium falciparum malaria. , 2009, The New England journal of medicine.

[45]  R. Hallett,et al.  Seasonal carriage of pfcrt and pfmdr1 alleles in Gambian Plasmodium falciparum imply reduced fitness of chloroquine-resistant parasites. , 2007, The Journal of infectious diseases.

[46]  T. Taylor,et al.  Return of chloroquine antimalarial efficacy in Malawi. , 2006, The New England journal of medicine.

[47]  J. Kublin,et al.  Reemergence of chloroquine-sensitive Plasmodium falciparum malaria after cessation of chloroquine use in Malawi. , 2003, The Journal of infectious diseases.

[48]  Justo Bolekia Boleká Equatorial Guinea. , 2001, Department of State publication. Background notes series.