Multiclass Support Vector Machines for Classification of ECG Data with Missing Values

The article presents an experimental study on multiclass Support Vector Machine (SVM) methods over a cardiac arrhythmia dataset that has missing attribute values for electrocardiogram (ECG) diagnostic application. The presence of an incomplete dataset and high data dimensionality can affect the performance of classifiers. Imputation of missing data and discriminant analysis are commonly used as preprocessing techniques in such large datasets. The article proposes experiments to evaluate performance of One-Against-All (OAA) and One-Against-One (OAO) approaches in kernel multiclass SVM for a heartbeat classification problem with imputation and dimension reduction techniques. The results indicate that the OAA approach has superiority over OAO in multiclass SVM for ECG data analysis with missing values.

[1]  Steven Van Vaerenbergh,et al.  Kernel Methods for Nonlinear Identification, Equalization and Separation of Signals , 2010 .

[2]  Jerzy W. Grzymala-Busse,et al.  A Comparison of Several Approaches to Missing Attribute Values in Data Mining , 2000, Rough Sets and Current Trends in Computing.

[3]  Yashwant Prasad Singh,et al.  ONE-CLASS SUPPORT VECTOR MACHINES APPROACH TO ANOMALY DETECTION , 2013, Appl. Artif. Intell..

[4]  Eric O. Postma,et al.  Dimensionality Reduction: A Comparative Review , 2008 .

[5]  Jason Weston,et al.  Multi-Class Support Vector Machines , 1998 .

[6]  Chih-Jen Lin,et al.  A Comparison of Methods for Multi-class Support Vector Machines , 2015 .

[7]  Alexander J. Smola,et al.  Support Vector Method for Function Approximation, Regression Estimation and Signal Processing , 1996, NIPS.

[8]  Daniel T. Larose,et al.  Discovering Knowledge in Data: An Introduction to Data Mining , 2005 .

[9]  Anthony Widjaja,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[10]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[11]  Zili Zhang,et al.  Missing Value Estimation for Mixed-Attribute Data Sets , 2011, IEEE Transactions on Knowledge and Data Engineering.

[12]  Tshilidzi Marwala,et al.  Imputation of Missing Data Using PCA, Neuro-Fuzzy and Genetic Algorithms , 2009, ICONIP.

[13]  Lutz Hamel,et al.  Knowledge Discovery with Support Vector Machines , 2009 .

[14]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[15]  Dimitrios Hatzinakos,et al.  Heart Biometrics: Theory, Methods and Applications , 2011 .

[16]  Maryamsadat Hejazi,et al.  Credit Data Fraud Detection using Kernel Methods with Support Vector Machine , 2012 .

[17]  Chih-Jen Lin,et al.  A comparison of methods for multiclass support vector machines , 2002, IEEE Trans. Neural Networks.

[18]  M Daszykowski,et al.  Dealing with missing values and outliers in principal component analysis. , 2007, Talanta.

[19]  Maya R. Gupta,et al.  Expected kernel for missing features in support vector machines , 2011, 2011 IEEE Statistical Signal Processing Workshop (SSP).

[20]  Filippo Menczer,et al.  Feature selection in data mining , 2003 .

[21]  I. Hartimo,et al.  Heart sound segmentation algorithm based on heart sound envelogram , 1997, Computers in Cardiology 1997.

[22]  Johan A. K. Suykens,et al.  Handling missing values in support vector machine classifiers , 2005, Neural Networks.

[23]  Shigeo Abe Support Vector Machines for Pattern Classification , 2010, Advances in Pattern Recognition.

[24]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[25]  Kemal Polat,et al.  Computer aided diagnosis of ECG data on the least square support vector machine , 2008, Digit. Signal Process..

[26]  Juha Karhunen,et al.  Robust PCA Methods for Complete and Missing Data , 2011 .

[27]  Chih-Jen Lin,et al.  A tutorial on?-support vector machines , 2005 .

[28]  Edgar Acuña,et al.  The Treatment of Missing Values and its Effect on Classifier Accuracy , 2004 .

[29]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.