Random dynamical systems: a review

Summary.This paper provides a review of some results on the stability of random dynamical systems and indicates a number of applications to stochastic growth models, linear and non-linear time series models, statistical estimation of invariant distributions, and random iterations of quadratic maps.

[1]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[2]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[3]  R. Bhattacharya,et al.  On a Theorem of Dubins and Freedman , 1999 .

[4]  R. Bhattacharya,et al.  ASYMPTOTICS OF A CLASS OF MARKOV PROCESSES WHICH ARE NOT IN GENERAL IRREDUCIBLE , 1988 .

[5]  A. Brandt The stochastic equation Yn+1=AnYn+Bn with stationary coefficients , 1986 .

[6]  C. Granger,et al.  Modelling Nonlinear Economic Relationships , 1995 .

[7]  Y. Kifer Ergodic theory of random transformations , 1986 .

[8]  K. Athreya,et al.  Estimating the stationary distribution of a Markov chain , 2003 .

[9]  Krishna B. Athreya,et al.  Estimating the stationary distribution of a Markov chain , 2003 .

[10]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[11]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[12]  M. Mackey,et al.  Stochastic perturbation of dynamical systems: The weak convergence of measures , 1989 .

[13]  Richard H. Day,et al.  Complex economic dynamics , 1994 .

[14]  D. Freedman,et al.  Invariant Probabilities for Certain Markov Processes , 1966 .

[15]  Rabi Bhattacharya,et al.  Stochastic processes with applications , 1990 .

[16]  R. M. Dudley,et al.  Real Analysis and Probability , 1989 .

[17]  R. Bhattacharya,et al.  Stability in distribution of randomly perturbed quadratic maps as Markov processes , 2004, math/0503540.

[18]  Manuel S. Santos,et al.  Accuracy of simulations for stochastic dynamic models , 2005 .

[19]  Jerry R. Green,et al.  The Nature of Stochastic Equilibria , 1975 .

[20]  Cees Diks Nonlinear time series analysis , 1999 .

[21]  R. Bhattacharya,et al.  An Approach to the Existence of Unique Invariant Probabilities for Markov Processes ∗ , 1999 .

[22]  D. Ruelle Chaotic evolution and strange attractors , 1989 .

[23]  Random Iterations of Two Quadratic Maps , 1993 .

[24]  Marc A. Berger,et al.  Random Affine Iterated Function Systems: Mixing and Encoding , 1992 .

[25]  J. Guckenheimer ONE‐DIMENSIONAL DYNAMICS * , 1980 .

[26]  Krishna B. Athreya,et al.  Random Logistic Maps. I , 2000 .

[27]  Manuel S. Santos Simulation-based estimation of dynamic models with continuous equilibrium solutions , 2004 .

[28]  J. Eckmann,et al.  Iterated maps on the interval as dynamical systems , 1980 .

[29]  J. Doob Stochastic processes , 1953 .

[30]  Tapan Mitra,et al.  Dynamic optimization under uncertainty: non-convex feasible set , 1989 .

[31]  W. D. Melo,et al.  ONE-DIMENSIONAL DYNAMICS , 2013 .

[32]  On the Nonuniqueness of the Invariant Probability for I.I.D. Random Logisitc Maps , 2002 .

[33]  M. Barnsley,et al.  A new class of markov processes for image encoding , 1988, Advances in Applied Probability.

[34]  Rabi Bhattacharya,et al.  On a Class of Stable Random Dynamical Systems: Theory and Applications , 2001, J. Econ. Theory.

[35]  Persi Diaconis,et al.  Iterated Random Functions , 1999, SIAM Rev..

[36]  Tapan Mitra,et al.  Robust ergodic chaos in discounted dynamic optimization models , 1994 .