Gradient-dependent deformation of two-phase single crystals

Abstract In this work, a gradient- and rate-dependent crystallographic formulation is proposed to investigate the macroscopic behaviour of two-phase single crystals. The slip-system-based constitutive formulation relies on strain-gradient concepts to account for the additional strengthening mechanism associated with the deformation gradients within a single crystal with a high volume fraction of dispersed inclusions. The resulting total slip resistance in each active system is assumed to be due to a mixed population of forest obstacles arising from both statistically stored and geometrically necessary dislocations. The non-local theory is implemented numerically into the finite element method and used to investigate the effect of the relevant microstructural (i.e., size and volume fraction of precipitated inclusions) and deformation-gradient-related length scales on the macroscopic behaviour of a typical nickel-based superalloy single crystal. An analytical framework to link the strain-gradient effects at the microscopic level with the macroscopic behaviour of an equivalent homogeneous single crystal is also proposed.

[1]  Georges Cailletaud,et al.  Single Crystal Modeling for Structural Calculations: Part 1—Model Presentation , 1991 .

[2]  Huajian Gao,et al.  Mechanism-based strain gradient plasticity— I. Theory , 1999 .

[3]  Hans Muhlhaus,et al.  Application of Cosserat theory in numerical solutions of limit load problems , 1989 .

[4]  M. Ashby,et al.  Strain gradient plasticity: Theory and experiment , 1994 .

[5]  L. Anand,et al.  Crystallographic texture evolution in bulk deformation processing of FCC metals , 1992 .

[6]  A. Acharya,et al.  Thermodynamic restrictions on constitutive equations for second-deformation-gradient inelastic behavior , 1995 .

[7]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[8]  A. Argon,et al.  Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipitates , 1994 .

[9]  J. Rice,et al.  Constitutive analysis of elastic-plastic crystals at arbitrary strain , 1972 .

[10]  Huajian Gao,et al.  Strain gradient plasticity , 2001 .

[11]  J. Nye Some geometrical relations in dislocated crystals , 1953 .

[12]  E. Busso,et al.  Cyclic deformation of monocrystalline nickel aluminide and high temperature coatings , 1990 .

[13]  H.-B. Miihlhaus Application of Cosserat theory in numerical solutions of limit load problems , 1989 .

[14]  R. J.,et al.  I Strain Localization in Ductile Single Crystals , 1977 .

[15]  G. Cailletaud,et al.  Single crystal modeling for structural calculations. II, Finite element implementation , 1991 .

[16]  U. F. Kocks A statistical theory of flow stress and work-hardening , 1966 .

[17]  K. P. Walker,et al.  Biaxial Constitutive Modelling and Testing of a Single Crystal Superalloy at Elevated Temperatures , 1989 .

[18]  Noel P. O’Dowd,et al.  Length scale effects on the geometric softening of precipitated single crystals , 1998 .

[19]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[20]  N. O'Dowd,et al.  Finite element implementation of a generalised non-local rate-dependent crystallographic formulation for finite strains , 2001 .

[21]  Hussein M. Zbib,et al.  On the localization and postlocalization behavior of plastic deformation. I: On the initiation of shear bands , 1988 .

[22]  Samuel Forest,et al.  Modeling slip, kink and shear banding in classical and generalized single crystal plasticity , 1998 .

[23]  M. Ashby The deformation of plastically non-homogeneous materials , 1970 .

[24]  D. Lloyd Particle reinforced aluminium and magnesium matrix composites , 1994 .

[25]  James R. Rice,et al.  Strain localization in ductile single crystals , 1977 .

[26]  Esteban P. Busso,et al.  A dislocation mechanics-based crystallographic model of a B2-type intermetallic alloy , 1996 .

[27]  Huajian Gao,et al.  Mechanism-based strain gradient plasticity— I. Theory , 1999 .

[28]  E. Kröner,et al.  Kontinuumstheorie der Versetzungen und Eigenspannungen , 1958 .