Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO2 films

Abstract The thin films of carambola-like γ-MnO2 nanoflakes with about 20 nm in thickness and at least 200 nm in width were prepared on nickel sheets by combination of potentiostatic and cyclic voltammetric electrodeposition techniques. The as-prepared MnO2 nanomaterials, which were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), were used as the active material of the positive electrode for primary alkaline Zn/MnO2 batteries and electrochemical supercapacitors. Electrochemical measurements showed that the MnO2 nanoflake films displayed high potential plateau (around 1.0 V versus Zn) in primary Zn/MnO2 batteries at the discharge current density of 500 mA g−1 and high specific capacitance of 240 F g−1 at the current density of 1 mA cm−2. This indicated the potential application of carambola-like γ-MnO2 nanoflakes in high-power batteries and electrochemical supercapacitors. The growth process for the one- and three-dimensional nanostructured MnO2 was discussed on the basis of potentiostatic and cyclic voltammetric techniques. The present synthesis method can be extended to the preparation of other nanostructured metal-oxide films.

[1]  Norio Miura,et al.  Polyaniline- MnO2 Composite Electrode for High Energy Density Electrochemical Capacitor , 2004 .

[2]  Yadong Li,et al.  Selected-Control Hydrothermal Synthesis of α- and β-MnO2 Single Crystal Nanowires , 2002 .

[3]  M. Anderson,et al.  Novel Electrode Materials for Thin‐Film Ultracapacitors: Comparison of Electrochemical Properties of Sol‐Gel‐Derived and Electrodeposited Manganese Dioxide , 2000 .

[4]  D. Guyomard,et al.  Synthesis of nanocrystalline layered manganese oxides by the electrochemical reduction of AMnO4 (A = K, Li) , 2001 .

[5]  D. Tench,et al.  Electrodeposition of Conducting Transition Metal Oxide/Hydroxide Films from Aqueous Solution , 1983 .

[6]  Norio Miura,et al.  Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors , 2004 .

[7]  P. Kamath,et al.  Electrochemical Synthesis of Metal Oxides and Hydroxides , 2000 .

[8]  Jun Chen,et al.  High‐Power Alkaline Zn–MnO2 Batteries Using γ‐MnO2 Nanowires/Nanotubes and Electrolytic Zinc Powder , 2005 .

[9]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[10]  J. Pannetier,et al.  Structural and electrochemical properties of the proton / γ-MnO2 system , 1995 .

[11]  Brett Graeme Ammundsen,et al.  Novel Lithium‐Ion Cathode Materials Based on Layered Manganese Oxides , 2001 .

[12]  Changzheng Wu,et al.  Growth of well-aligned gamma-MnO2 monocrystalline nanowires through a coordination-polymer-precursor route. , 2003, Chemistry.

[13]  Michael M. Thackeray,et al.  Manganese oxides for lithium batteries , 1997 .

[14]  P. Kurzweil,et al.  A new monitoring method for electrochemical aggregates by impedance spectroscopy , 2004 .

[15]  Xun Wang,et al.  Rational synthesis of α-MnO2 single-crystal nanorods , 2002 .

[16]  Chi-Chang Hu,et al.  Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition , 2003 .

[17]  L. Binder,et al.  Effect of bath temperature on electrochemical properties of the anodically deposited manganese dioxide , 2001 .

[18]  Seok-Hyun Lee,et al.  Use of KCl Aqueous Electrolyte for 2 V Manganese Oxide/Activated Carbon Hybrid Capacitor , 2002 .

[19]  Yi Xie,et al.  Selected-Control Hydrothermal Synthesis of γ-ΜnO2 3D Nanostructures , 2003 .

[20]  M. Anderson,et al.  Material and Electrochemical Characterization of Tetrapropylammonium Manganese Oxide Thin Films as Novel Electrode Materials for Electrochemical Capacitors , 2002 .

[21]  Zhong‐Yong Yuan,et al.  A simple method to synthesise single-crystalline manganese oxide nanowires , 2003 .

[22]  T. Vitanov,et al.  The electrochemical double layer on sp metal single crystals , 1983 .

[23]  Jun Chen,et al.  Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. , 2006, Inorganic chemistry.

[24]  Jean Gamby,et al.  Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors , 2001 .

[25]  Mao-Sung Wu,et al.  Field Emission from Manganese Oxide Nanotubes Synthesized by Cyclic Voltammetric Electrodeposition , 2004 .

[26]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[27]  D. Linden Handbook Of Batteries , 2001 .

[28]  M. Ghaemi,et al.  Improved performance of rechargeable alkaline batteries via surfactant-mediated electrosynthesis of MnO2 , 2005 .

[29]  J. Otomo,et al.  Characteristics of MnOx electrochemical capacitors with solid electrolyte (CsHSO4) operated at elevated temperatures , 2004 .

[30]  Jun Chen,et al.  Y(OH)3-coated Ni(OH)2 tube as the positive-electrode materials of alkaline rechargeable batteries , 2005 .

[31]  Chi-Chang Hu,et al.  Capacitive and textural characteristics of hydrous manganese oxide prepared by anodic deposition , 2002 .

[32]  S. W. Kim,et al.  Expansion of Active Site Area and Improvement of Kinetic Reversibility in Electrochemical Pseudocapacitor Electrode , 2001 .

[33]  M. Anderson,et al.  Novel electrode materials for electrochemical capacitors: Part II. Material characterization of sol-gel-derived and electrodeposited manganese dioxide thin films , 2000 .

[34]  M. Mastragostino,et al.  Carbon Supports for Electrodeposited Pt-Ru Catalysts for DMFCs , 2004 .

[35]  S. Nishimura,et al.  Preparation of an electrochemically-formed spinel lithium manganese oxide and its charge-discharge behaviors , 2005 .

[36]  D. Ginley,et al.  Nanostructured MnO2 for Li batteries , 2003 .

[37]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .

[38]  P. Ajayan,et al.  Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. , 2005, The journal of physical chemistry. B.