Epitaxial Designs for Maximizing Efficiency in Resonant Tunneling Diode Based Terahertz Emitters

We discuss the modelling of high current density InGaAs/AlAs/InP resonant tunneling diodes to maximize their efficiency as THz emitters. A figure of merit which contributes to the wall plug efficiency, the intrinsic resonator efficiency, is used for the development of epitaxial designs. With the contribution of key parameters identified, we analyze the limitations of accumulated stress to assess the manufacturability of such designs. Optimal epitaxial designs are revealed, utilizing thin barriers, with a wide and shallow quantum well that satisfies the strained layer epitaxy constraint. We then assess the advantages to epitaxial perfection and electrical characteristics provided by devices with a narrow InAs sub-well inside a lattice-matched InGaAs alloy. These new structures will assist in the realization of the next-generation submillimeter emitters.

[1]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[2]  Hui Chun Liu,et al.  Simulation of extrinsic bistability of resonant tunneling structures , 1988 .

[3]  Hong Wang,et al.  Low-Contact-Resistance Non-Gold Ta/Si/Ti/Al/Ni/Ta Ohmic Contacts on Undoped AlGaN/GaN High-Electron-Mobility Transistors Grown on Silicon , 2013 .

[4]  R. A. Hogg,et al.  A Dual-Pass High Current Density Resonant Tunneling Diode for Terahertz Wave Applications , 2015, IEEE Electron Device Letters.

[5]  S. Weng Experimental studies of misfit dependence of critical layer thickness in pseudomorphic InGaAs single‐strained quantum‐well structures , 1989 .

[7]  Safumi Suzuki,et al.  Terahertz oscillators using electron devices - an approach with Resonant tunneling diodes , 2011, IEICE Electron. Express.

[8]  M. Büttiker Coherent and sequential tunneling in series barriers , 1988 .

[9]  The role of emitter quasi-bound state and scattering on intrinsic bistability in resonant tunneling diodes , 2004 .

[10]  Richard A. Hogg,et al.  Optimization of the epitaxial design of high current density resonant tunneling diodes for terahertz emitters , 2016, SPIE OPTO.

[11]  Sollner Comment on "Observation of intrinsic bistability in resonant-tunneling structures" , 1987, Physical review letters.

[12]  J. W. Matthews,et al.  Defects in epitaxial multilayers: I. Misfit dislocations* , 1974 .

[13]  Magnus Willander,et al.  Stresses and strains in epilayers, stripes and quantum structures of III - V compound semiconductors , 1996 .

[14]  Peter Meissner,et al.  High-frequency nonlinear characteristics of resonant-tunnelling diodes , 2011 .

[15]  C. Kim,et al.  High-Frequency High-Power Operation of Tunnel Diodes , 1961 .

[16]  Optimization of high current density resonant tunneling diodes for terahertz emitters , 2015, 2015 8th UK, Europe, China Millimeter Waves and THz Technology Workshop (UCMMT).

[17]  M. Manfra,et al.  Resonant tunneling through mixed quasibound states in a triple‐well structure , 1993 .

[18]  Masanori Hangyo,et al.  Development and future prospects of terahertz technology , 2015 .

[19]  Hiroshi Mizuta,et al.  The Physics and Applications of Resonant Tunnelling Diodes: Preface , 1995 .

[20]  Safumi Suzuki,et al.  High Output Power (∼400 µW) Oscillators at around 550 GHz Using Resonant Tunneling Diodes with Graded Emitter and Thin Barriers , 2011 .

[21]  Bruno Ricco,et al.  Physics of resonant tunneling. The one-dimensional double-barrier case , 1984 .

[22]  A. Madhukar,et al.  Highly strained GaAs/InGaAs/AlAs resonant tunneling diodes with simultaneously high peak current densities and peak‐to‐valley ratios at room temperature , 1991 .

[23]  Martin Koch,et al.  Terahertz Communications: A 2020 vision , 2007 .

[24]  Intrinsic bistability and emitter scattering in resonant tunneling diodes , 2003 .

[25]  Kyounghoon Yang,et al.  A 675 GHz Differential Oscillator Based on a Resonant Tunneling Diode , 2016, IEEE Transactions on Terahertz Science and Technology.

[26]  J. P. Connolly,et al.  Strain-balanced GaAsP/InGaAs quantum well solar cells , 1999 .

[27]  Safumi Suzuki,et al.  Structural and electrical transport properties of MOVPE-grown pseudomorphic AlAs/InGaAs/InAs resonant tunneling diodes on InP substrates , 2014 .

[28]  Jue Wang,et al.  Resonant tunnelling diode terahertz sources for broadband wireless communications , 2017, OPTO.

[29]  R. People,et al.  Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained‐layer heterostructures , 1985 .

[30]  Michael N. Feiginov,et al.  Does the quasibound-state lifetime restrict the high-frequency operation of resonant-tunnelling diodes? , 2000 .

[31]  T. Mukai,et al.  Non-destructive mapping of doping and structural composition of MOVPE-grown high current density resonant tunnelling diodes through photoluminescence spectroscopy , 2015 .

[32]  Tadao Nagatsuma,et al.  Giga-bit wireless communication at 300 GHz using resonant tunneling diode detector , 2011, Asia-Pacific Microwave Conference 2011.

[33]  T. Nagatsuma,et al.  Present and Future of Terahertz Communications , 2011, IEEE Transactions on Terahertz Science and Technology.

[34]  Peter Vogl,et al.  The non-equilibrium Green’s function method: an introduction , 2010 .

[35]  Ben J. Stevens,et al.  Valley current characterization of high current density resonant tunnelling diodes for terahertz-wave applications , 2017 .

[36]  M. Pate,et al.  Observation of intrinsic bistability in resonant tunnelling devices , 1988 .

[37]  Safumi Suzuki,et al.  Oscillation up to 1.92 THz in resonant tunneling diode by reduced conduction loss , 2016 .

[38]  Peter Meissner,et al.  Resonant-tunnelling-diode oscillators operating at frequencies above 1.1 THz , 2011 .

[39]  Richard A. Hogg,et al.  Fabrication, characterisation, and epitaxial optimisation of MOVPE-grown resonant tunnelling diode THz emitters , 2017, OPTO.

[40]  K. Jacobs,et al.  Development of resonant tunnelling diode terahertz emitter , 2015 .

[41]  Masayuki Fujita,et al.  High-speed error-free wireless data transmission using a terahertz resonant tunnelling diode transmitter and receiver , 2016 .

[42]  Mark J. W. Rodwell,et al.  Ultralow resistance, nonalloyed Ohmic contacts to n-InGaAs , 2009 .

[43]  Datta,et al.  Nonequilibrium Green's-function method applied to double-barrier resonant-tunneling diodes. , 1992, Physical review. B, Condensed matter.

[44]  T. C. Mcgill,et al.  Growth and characterization of high current density, high-speed InAs/AlSb resonant tunneling diodes , 1991 .

[45]  Y. Miyamoto,et al.  Barrier thickness dependence of peak current density in GaInAs/AlAs/InP resonant tunneling diodes by MOVPE , 1999 .

[46]  Richard A. Hogg,et al.  Characterisation of high current density resonant tunnelling diodes for THz emission using photoluminescence spectroscopy , 2016, 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz).

[47]  Patrick Roblin,et al.  INTERFACE ROUGHNESS SCATTERING IN ALAS/INGAAS RESONANT TUNNELING DIODES WITH AN INAS SUBWELL , 1996 .

[49]  G. Strinati Application of the Green’s functions method to the study of the optical properties of semiconductors , 1988 .

[50]  Takao Waho,et al.  Capacitance Anomaly in the Negative Differential Resistance Region of Resonant Tunneling Diodes , 1997 .

[51]  H. Mera,et al.  Inelastic scattering in nanoscale devices: One-shot current-conserving lowest-order approximation , 2012 .

[52]  Tsui,et al.  Observation of intrinsic bistability in resonant tunneling structures. , 1987, Physical review letters.

[53]  H. Cui,et al.  Simulation of resonant tunneling structures: Origin of the I-V hysteresis and plateau-like structure , 2000 .