Measuring soil organic carbon in croplands at regional scale using airborne imaging spectroscopy

[1]  B. V. Rao,et al.  Hardgrove grindability index prediction using support vector regression , 2009 .

[2]  M. Vennetier,et al.  Predicting soil quality indices with near infrared analysis in a wildfire chronosequence. , 2009, The Science of the total environment.

[3]  J. Franke,et al.  Soil heterogeneity at the field scale: a challenge for precision crop protection , 2008, Precision Agriculture.

[4]  R. V. Rossel,et al.  Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study , 2008 .

[5]  Sabine Grunwald,et al.  Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra , 2008 .

[6]  M. Schaepman,et al.  Spectral reflectance based indices for soil organic carbon quantification , 2008 .

[7]  P. Lagacherie,et al.  Estimation of soil clay and calcium carbonate using laboratory, field and airborne hyperspectral measurements , 2008 .

[8]  Kristof Van Oost,et al.  The relationship between landform and the distribution of soil C, N and P under conventional and minimum tillage , 2008 .

[9]  W. Detar,et al.  Detection of Soil Properties with Airborne Hyperspectral Measurements of Bare Fields , 2008 .

[10]  Sabine Chabrillat,et al.  Imaging Spectrometry for Soil Applications , 2008 .

[11]  Alex B. McBratney,et al.  Soil organic carbon prediction by hyperspectral remote sensing and fi eld vis-NIR spectroscopy : An Australian case study , 2008 .

[12]  Beth K. Gugino,et al.  Farmer-oriented assessment of soil quality using field, laboratory, and VNIR spectroscopy methods , 2008, Plant and Soil.

[13]  Bas van Wesemael,et al.  Regional assessment of soil organic carbon changes under agriculture in Southern Belgium (1955-2005) , 2007 .

[14]  E. Ben-Dor,et al.  Laboratory, field and airborne spectroscopy for monitoring organic carbon content in agricultural soils , 2007 .

[15]  N. M. Faber,et al.  How to avoid over-fitting in multivariate calibration--the conventional validation approach and an alternative. , 2007, Analytica chimica acta.

[16]  W. S. Lee,et al.  REFLECTANCE SPECTROSCOPY FOR ROUTINE AGRONOMIC SOIL ANALYSES , 2007 .

[17]  Ron Wehrens,et al.  The pls Package: Principal Component and Partial Least Squares Regression in R , 2007 .

[18]  M. D. Río-Celestino,et al.  Near-Infrared Reflectance Spectroscopy , 2007 .

[19]  U. Schmidhalter,et al.  High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modeling procedures , 2006 .

[20]  Budiman Minasny,et al.  Simulation of soil thickness evolution in a complex agricultural landscape at fine spatial and temporal scales , 2006 .

[21]  J. Poesen,et al.  Spatial patterns of land degradation and their impacts on the water balance of rainfed treecrops: A case study in South East Spain , 2006 .

[22]  Bernard Tychon,et al.  Detection of carbon stock change in agricultural soils using spectroscopic techniques , 2006 .

[23]  Daniel Schläpfer,et al.  An automatic atmospheric correction algorithm for visible/NIR imagery , 2006 .

[24]  R. V. Rossel,et al.  Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties , 2006 .

[25]  P. Miller,et al.  Validation requirements for diffuse reflectance soil characterization models with a case study of VNIR soil C prediction in Montana , 2005 .

[26]  P. Lootens,et al.  Possibilities of near infrared reflectance spectroscopy for the prediction of organic carbon concentrations in grassland soils , 2005, The Journal of Agricultural Science.

[27]  Lei Tian,et al.  SOIL FERTILITY CHARACTERIZATION IN AGRICULTURAL FIELDS USING HYPERSPECTRAL REMOTE SENSING , 2005 .

[28]  Monica Odlare,et al.  Near infrared reflectance spectroscopy for assessment of spatial soil variation in an agricultural field , 2005 .

[29]  C. Hurburgh,et al.  INFLUENCE OF SOIL MOISTURE ON NEAR-INFRARED REFLECTANCE SPECTROSCOPIC MEASUREMENT OF SOIL PROPERTIES , 2005 .

[30]  Shiv O. Prasher,et al.  Development of field-scale soil organic matter content estimation models in eastern Canada using airborne hyperspectral imagery , 2005 .

[31]  L. K. Sørensen,et al.  Determination of Clay and Other Soil Properties by Near Infrared Spectroscopy , 2005 .

[32]  P. Smith Monitoring and verification of soil carbon changes under Article 3.4 of the Kyoto Protocol , 2004 .

[33]  Eyal Ben-Dor,et al.  Quality assessment of several methods to recover surface reflectance using synthetic imaging spectroscopy data , 2004 .

[34]  T. Jarmer,et al.  Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial least-square regression: A feasibility study , 2003, Plant and Soil.

[35]  Jerome J. Workman,et al.  Near-infrared spectroscopy in agriculture , 2004 .

[36]  P. Eilers A perfect smoother. , 2003, Analytical chemistry.

[37]  D. Lobell,et al.  Moisture effects on soil reflectance , 2002 .

[38]  B. Marx,et al.  Multivariate calibration stability: a comparison of methods , 2002 .

[39]  A. Karnieli,et al.  Mapping of several soil properties using DAIS-7915 hyperspectral scanner data - a case study over clayey soils in Israel , 2002 .

[40]  S. Wold,et al.  PLS-regression: a basic tool of chemometrics , 2001 .

[41]  C. Hurburgh,et al.  Near-Infrared Reflectance Spectroscopy–Principal Components Regression Analyses of Soil Properties , 2001 .

[42]  T. Iwata,et al.  Elimination of the Uninformative Calibration Sample Subset in the Modified UVE(Uninformative Variable Elimination)–PLS (Partial Least Squares) Method , 2001, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[43]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[44]  Eyal Ben-Dor,et al.  Determination of surface reflectance from raw hyperspectral data without simultaneous ground data measurements: A case study of the GER 63-channel sensor data acquired over Naan, Israel , 2000 .

[45]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[46]  A. Rencz,et al.  Remote sensing for the earth sciences , 1999 .

[47]  Brian D. Marx,et al.  Generalized Linear Regression on Sampled Signals and Curves: A P-Spline Approach , 1999, Technometrics.

[48]  S. Ustin,et al.  Remote sensing of soil properties in the Santa Monica mountains I. Spectral analysis , 1998 .

[49]  Pete Smith,et al.  A European network of long-term sites for studies on soil organic matter , 1998 .

[50]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[51]  J. Deckers,et al.  World Reference Base for Soil Resources , 1998 .

[52]  Paul H. C. Eilers,et al.  Flexible smoothing with B-splines and penalties , 1996 .

[53]  E. Ben-Dor,et al.  NEAR INFRARED ANALYSIS (NIRA) AS A METHOD TO SIMULTANEOUSLY EVALUATE SPECTRAL FEATURELESS CONSTITUENTS IN SOILS , 1995 .

[54]  Daniel C. Coster,et al.  High dimensional reflectance analysis of soil organic matter , 1992 .

[55]  John S. Shenk,et al.  Populations Structuring of Near Infrared Spectra and Modified Partial Least Squares Regression , 1991 .

[56]  David A. Landgrebe,et al.  Spectral band selection for classification of soil organic matter content , 1989 .

[57]  R. Barnes,et al.  Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra , 1989 .

[58]  R. Henry,et al.  Simultaneous Determination of Moisture, Organic Carbon, and Total Nitrogen by Near Infrared Reflectance Spectrophotometry , 1986 .

[59]  E. B. Andersen,et al.  Information Science and Statistics , 1986 .

[60]  P. Williams,et al.  Optimization of mathematical treatments of raw near-infrared signal in the measurement of protein in hard red spring wheat. I. Influence of particle size. , 1984 .

[61]  E. R. Stoner,et al.  Characteristic variations in reflectance of surface soils , 1981 .

[62]  R. Colwell Remote sensing of the environment , 1980, Nature.

[63]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .