Condensation and thermalization of classsical optical waves in a waveguide

We consider the long-term evolution of a random nonlinear wave that propagates in a multimode optical waveguide. The optical wave exhibits a thermalization process characterized by an irreversible evolution toward an equilibrium state. The tails of the equilibrium distribution satisfy the property of energy equipartition among the modes of the waveguide. As a consequence of this thermalization, the optical field undergoes a process of classical wave condensation, which is characterized by a macroscopic occupation of the fundamental mode of the waveguide. Considering the nonlinear Schr¨ odinger equation with a confining potential, we formulate a wave turbulence description of the random wave into the basis of the eigenmodes of the waveguide. The condensate amplitudeiscalculatedanalyticallyasafunctionofthewaveenergy,anditisfoundinquantitativeagreementwith the numerical simulations. The analysis reveals that the waveguide configuration introduces an effective physical frequency cutoff, which regularizes the ultraviolet catastrophe inherent to the ensemble of classical nonlinear waves. The numerical simulations have been performed in the framework of a readily accessible nonlinear fiber optics experiment.

[1]  J. Garnier,et al.  Unified kinetic formulation of incoherent waves propagating in nonlinear media with noninstantaneous response , 2010 .

[2]  Antonio Picozzi,et al.  Spectral incoherent solitons: a localized soliton behavior in the frequency domain. , 2008, Physical review letters.

[3]  Nonstationary nonlinear effects in optical microspheres , 2005 .

[4]  S. Coen,et al.  Towards a thermodynamic description of supercontinuum generation , 2008, 2009 IEEE/LEOS Winter Topicals Meeting Series.

[5]  A. Picozzi Towards a nonequilibrium thermodynamic description of incoherent nonlinear optics. , 2007, Optics express.

[6]  A. Picozzi,et al.  Coherence absorption and condensation induced by thermalization of incoherent nonlinear fields , 2008 .

[7]  B. Kibler,et al.  Wave-turbulence approach of supercontinuum generation: Influence of self-steepening and higher-order dispersion , 2009 .

[8]  丁東鎭 12 , 1993, Algo habla con mi voz.

[9]  Emergence of rogue waves from optical turbulence , 2010 .

[10]  A. Hasegawa,et al.  Self-confinement of multimode optical pulse in a glass fiber. , 1980, Optics letters.

[11]  R. Morandotti,et al.  Universal correlations in a nonlinear periodic 1D system. , 2008, Physical Review Letters.

[12]  Valérie Doya,et al.  Light scarring in an optical fiber. , 2001, Physical review letters.

[13]  Chen,et al.  Self-trapping of dark incoherent light beams , 1998, Science.

[14]  Gregory Falkovich,et al.  Kolmogorov Spectra of Turbulence I , 1992 .

[15]  Simulations of thermal Bose fields in the classical limit , 2002, cond-mat/0201571.

[16]  Ewan M Wright,et al.  Efficiency of pump absorption in double-clad fiber amplifiers. II. Broken circular symmetry , 2001 .

[17]  M. Segev,et al.  Incoherent spatial solitons in effectively instantaneous nonlinear media , 2008 .

[18]  F. Dias,et al.  One-dimensional wave turbulence , 2004 .

[19]  Baruch Fischer,et al.  Light-mode condensation in actively-mode-locked lasers. , 2010, Physical review letters.

[20]  B. Levit,et al.  Laser light condensate: experimental demonstration of light-mode condensation in actively mode locked laser. , 2010, Optics express.

[21]  Chen,et al.  Self-Trapping of Partially Spatially Incoherent Light. , 1996, Physical review letters.

[22]  Massimo Inguscio,et al.  Anderson localization of a non-interacting Bose–Einstein condensate , 2008, Nature.

[23]  D. Dylov,et al.  Observation of all-optical bump-on-tail instability. , 2007, Physical review letters.

[24]  A. Hasegawa,et al.  Dynamics of an ensemble of plane waves in nonlinear dispersive media , 1975 .

[25]  Alan C. Newell,et al.  Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear Schro¨dinger equation , 1992 .

[26]  B. Kalinikos,et al.  Random generation of coherent solitary waves from incoherent waves. , 2006, Physical review letters.

[27]  George I. Stegeman,et al.  Waveguides and Fibers for Nonlinear Optics , 1989, Nonlinear Optical Properties of Materials.

[28]  M. Segev,et al.  Theory of Incoherent Dark Solitons , 1998 .

[29]  Eric J. Heller,et al.  Bound-State Eigenfunctions of Classically Chaotic Hamiltonian Systems: Scars of Periodic Orbits , 1984 .

[30]  P. Suret,et al.  Anomalous thermalization of nonlinear wave systems. , 2010, Physical review letters.

[31]  A. Picozzi,et al.  Parametric three-wave soliton generated from incoherent light. , 2001, Physical review letters.

[32]  A. Hasegawa Envelope soliton of random phase waves , 1977 .

[33]  V. Zakharov,et al.  Dynamics of the Bose–Einstein condensation , 2005 .

[34]  V. Semenov,et al.  Statistical theory for incoherent light propagation in nonlinear media. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  M. Segev,et al.  Theory of Self-Trapped Spatially Incoherent Light Beams , 1997 .

[36]  A. Newell,et al.  Coherent structures and entropy in constrained, modulationally unstable, nonintegrable systems. , 2001, Physical review letters.

[37]  Wave turbulence in Bose–Einstein condensates , 2003, math-ph/0308008.

[38]  M. Modugno,et al.  Delocalization of a disordered bosonic system by repulsive interactions , 2009, 0910.5062.

[39]  문정진 § 19 , 2000 .

[40]  V. Tsytovich,et al.  Nonlinear Effects in Plasma , 1970 .

[41]  L Angelani,et al.  Condensation in disordered lasers: theory, 3D+1 simulations, and experiments. , 2008, Physical review letters.

[42]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[43]  A. Picozzi,et al.  Coherence properties of the parametric three-wave interaction driven from an incoherent pump. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Sergei K. Turitsyn,et al.  Random distributed feedback fiber laser , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.

[45]  C. Barsi,et al.  Imaging through nonlinear media using digital holography , 2009 .

[46]  A. Newell The closure problem in a system of random gravity waves , 1968 .

[47]  A. Picozzi,et al.  Breakdown of weak-turbulence and nonlinear wave condensation , 2009 .

[48]  Frank Vewinger,et al.  Bose–Einstein condensation of photons in an optical microcavity , 2010, Nature.

[49]  A. Aspect,et al.  Direct observation of Anderson localization of matter waves in a controlled disorder , 2008, Nature.

[50]  Kevin L. Schroder,et al.  The effect of dispersion on spectral broadening of incoherent continuous-wave light in optical fibers. , 2010, Optics express.

[51]  S. Residori,et al.  Optical wave turbulence and the condensation of light , 2009, 0904.2552.

[52]  D. J. Benney,et al.  Nonlinear interactions of random waves in a dispersive medium , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[53]  Y. Pomeau Long time behavior of solutions of nonlinear classical field equations: the example of NLS defocusing , 1992 .

[54]  G. Millot,et al.  Experimental signature of optical wave thermalization through supercontinuum generation in photonic crystal fiber. , 2009, Optics express.

[55]  G. Millot,et al.  Incoherent modulation instability in instantaneous nonlinear Kerr media. , 2005, Optics letters.

[56]  A. Picozzi Spontaneous polarization induced by natural thermalization of incoherent light. , 2008, Optics express.

[57]  A. Newell,et al.  Localization and coherence in nonintegrable systems , 2003, nlin/0306011.

[58]  M. Segev,et al.  Spontaneous pattern formation upon incoherent waves: from modulation-instability to steady-state. , 2008, Optics express.

[59]  Laurent Sanchez-Palencia,et al.  Disordered quantum gases under control , 2009, 0911.0629.

[60]  Yuri S. Kivshar,et al.  Optical Solitons: From Fibers to Photonic Crystals , 2003 .

[61]  Optical turbulence and spectral condensate in long-fiber lasers , 2009 .

[62]  S. Babin,et al.  Raman fiber lasers with a random distributed feedback based on Rayleigh scattering , 2010 .

[63]  N. Berloff,et al.  Scenario of strongly nonequilibrated Bose-Einstein condensation , 2002 .

[64]  A. Picozzi,et al.  Influence of dispersion on the resonant interaction between three incoherent waves. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  Valérie Doya,et al.  Speckle statistics in a chaotic multimode fiber. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  M. Segev,et al.  Incoherent surface solitons in effectively instantaneous nonlocal nonlinear media , 2009 .

[67]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[68]  Yaron Silberberg,et al.  Hanbury Brown and Twiss interferometry with interacting photons , 2010 .

[69]  Thermalization of a two-dimensional photonic gas in a `white wall' photon box , 2010, 1004.2956.

[70]  O. Bang,et al.  Collapse of Incoherent Light Beams in Inertial Bulk Kerr Media , 1999 .

[71]  G Ruocco,et al.  Free-energy transition in a gas of noninteracting nonlinear wave particles. , 2008, Physical review letters.

[72]  Simulations of Bose fields at finite temperature. , 2000, Physical review letters.

[73]  Sergei K. Turitsyn,et al.  Turbulent broadening of optical spectra in ultralong Raman fiber lasers , 2008 .

[74]  Condensation of classical nonlinear waves. , 2005, Physical review letters.

[75]  J. Howard,et al.  Optical electronics. , 1967, Applied optics.

[76]  Projected Gross-Pitaevskii equation for harmonically confined Bose gases at finite temperature , 2004, cond-mat/0410496.

[77]  P. Suret,et al.  Influence of third-order dispersion on the propagation of incoherent light in optical fibers. , 2010, Optics letters.

[78]  P. Suret,et al.  Spectral broadening of a multimode continuous-wave optical field propagating in the normal dispersion regime of a fiber. , 2006, Optics letters.

[79]  W. Ketterle,et al.  Bose-Einstein condensation , 1997 .

[80]  M. Peccianti,et al.  Incoherent spatial solitary waves in nematic liquid crystals. , 2001, Optics letters.

[81]  S. Pitois,et al.  Velocity locking of incoherent nonlinear wave-packets , 2006 .

[82]  Sergey Nazarenko,et al.  Wave turbulence and intermittency , 2001 .

[83]  A. E. Ismagulov,et al.  Turbulence-induced square-root broadening of the Raman fiber laser output spectrum. , 2008, Optics letters.

[84]  M. Segev,et al.  Theory Of Incoherent Self-focusing In Biased Photorefractive Media , 1997, QELS '97., Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[85]  Sergey A. Babin,et al.  Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser , 2007 .

[86]  A. Picozzi,et al.  Thermalization of the dispersive three-wave interaction , 2007 .

[87]  B. Rumpf Simple statistical explanation for the localization of energy in nonlinear lattices with two conserved quantities. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.