Structural basis for mannose recognition by a lectin from opportunistic bacteria Burkholderia cenocepacia.
暂无分享,去创建一个
Michaela Wimmerová | Anne Imberty | Ondrej Sedo | Annabelle Varrot | A. Imberty | E. Mitchell | M. Wimmerová | A. Varrot | E. Duchaud | Edward P Mitchell | Lenka Malinovská | O. Šedo | Emilie Lameignere | Lenka Malinovská | Margita Sláviková | Eric Duchaud | Emilie Lameignère | M. Sláviková
[1] P. Vandamme,et al. Taxonomy and pathogenesis of the Burkholderia cepacia complex , 2005, Chronic respiratory disease.
[2] Collaborative Computational,et al. The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.
[3] A. Imberty,et al. Structural basis of high-affinity glycan recognition by bacterial and fungal lectins. , 2005, Current opinion in structural biology.
[4] J. Thornton,et al. PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .
[5] R. Loris,et al. Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. , 2005, Microbiology.
[6] G Vriend,et al. WHAT IF: a molecular modeling and drug design program. , 1990, Journal of molecular graphics.
[7] Jaroslav Koca,et al. High affinity fucose binding of Pseudomonas aeruginosa lectin PA‐IIL: 1.0 Å resolution crystal structure of the complex combined with thermodynamics and computational chemistry approaches , 2004, Proteins: Structure, Function, and Bioinformatics.
[8] L. Eberl,et al. Pseudomonas aeruginosa and Burkholderia cepacia in cystic fibrosis: genome evolution, interactions and adaptation. , 2004, International journal of medical microbiology : IJMM.
[9] P. Vandamme,et al. Diversity and role of Burkholderia spp. , 2007 .
[10] Jan Adam,et al. Engineering of PA-IIL lectin from Pseudomonas aeruginosa – Unravelling the role of the specificity loop for sugar preference , 2007, BMC Structural Biology.
[11] M. Dodd,et al. Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis , 1993, The Lancet.
[12] Jan Adam,et al. Unusual entropy-driven affinity of Chromobacterium violaceum lectin CV-IIL toward fucose and mannose. , 2006, Biochemistry.
[13] L. Saiman,et al. Infection Control in Cystic Fibrosis , 2004, Clinical Microbiology Reviews.
[14] A. Imberty,et al. A new Ralstonia solanacearum high‐affinity mannose‐binding lectin RS‐IIL structurally resembling the Pseudomonas aeruginosa fucose‐specific lectin PA‐IIL , 2004, Molecular microbiology.
[15] Chi-Huey Wong,et al. Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[16] A. Imberty,et al. Production and properties of the native Chromobacterium violaceum fucose-binding lectin (CV-IIL) compared to homologous lectins of Pseudomonas aeruginosa (PA-IIL) and Ralstonia solanacearum (RS-IIL). , 2006, Microbiology.
[17] P. Kraulis. A program to produce both detailed and schematic plots of protein structures , 1991 .
[18] L. Wyns,et al. Structural basis of carbohydrate recognition by the lectin LecB from Pseudomonas aeruginosa. , 2003, Journal of molecular biology.
[19] Gerald B. Pier,et al. Lung Infections Associated with Cystic Fibrosis , 2002, Clinical Microbiology Reviews.
[20] A. Imberty,et al. Production, properties and specificity of a new bacterial L-fucose- and D-arabinose-binding lectin of the plant aggressive pathogen Ralstonia solanacearum, and its comparison to related plant and microbial lectins. , 2002, Journal of biochemistry.
[21] N. Gilboa-Garber. Pseudomonas aeruginosa lectins. , 1982, Methods in enzymology.
[22] Luigi Chiarini,et al. Burkholderia cepacia complex species: health hazards and biotechnological potential. , 2006, Trends in microbiology.
[23] A. Imberty,et al. Binding of different monosaccharides by lectin PA‐IIL from Pseudomonas aeruginosa: Thermodynamics data correlated with X‐ray structures , 2006, FEBS letters.
[24] G. Murshudov,et al. Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.
[25] Serge Pérez,et al. Structural basis for oligosaccharide-mediated adhesion of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients , 2002, Nature Structural Biology.
[26] T. Dam,et al. Thermodynamic studies of lectin-carbohydrate interactions by isothermal titration calorimetry. , 2002, Chemical reviews.
[27] Kevin Cowtan,et al. research papers Acta Crystallographica Section D Biological , 2005 .
[28] A. Vagin,et al. MOLREP: an Automated Program for Molecular Replacement , 1997 .
[29] V. Deretic,et al. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. , 1996, Microbiological reviews.
[30] S. Molin,et al. N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. , 2001, Microbiology.