System Design and Dynamic Walking of Humanoid Robot KHR-2

In this paper, we describe the mechanical design, system integration and dynamic walking of the humanoid, KHR-2 (KAIST Humanoid Robot– 2). KHR-2 has 41 DOFs in total, that allows it to imitate various human-like motions. To control all joint axes effectively, the distributed control architecture is used, which reduces computation burden on the main controller, and allows convenient system. A servo motor controller was used as the sub-controller, whereas a 3-axis force/torque sensor and an inertia sensor were used in the sensory system. The main controller attached on the back of KHR-2 communicates with the sub-controllers in real-time through CAN (Controller Area Network) protocol. Windows XP was used as the operation system, whereas RTX HAL extension commercial software was used to realize the real-time control capability in Windows environment. We define the walking pattern and describe several online controllers in each stage. Some of the experimental results of KHR-2 are also presented.

[1]  Atsuo Takanishi,et al.  Development of a Biped Walking Robot Compensating for Three-Axis Moment by Trunk Motion , 1993 .

[2]  Atsuo Takanishi,et al.  Development of a biped walking robot compensating for three-axis moment by trunk motion , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[3]  T. Takenaka,et al.  The development of Honda humanoid robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[4]  Masayuki Inaba,et al.  Design and development of research platform for perception-action integration in humanoid robot: H6 , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[5]  Friedrich Pfeiffer,et al.  Towards the design of a biped jogging robot , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[6]  Kikuo Fujimura,et al.  The intelligent ASIMO: system overview and integration , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[7]  Masayuki Inaba,et al.  Online 3D vision, motion planning and bipedal locomotion control coupling system of humanoid robot: H7 , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Jun-Ho Oh Design of Lower Limbs for a Humanoid Biped Robot , 2002 .

[9]  Atsuo Takanishi,et al.  Online walking pattern generation for biped humanoid robot with trunk , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[10]  Toshikazu Kawasaki,et al.  Design of prototype humanoid robotics platform for HRP , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  Jun-Ho Oh,et al.  Development of a Humanoid Biped Walking Robot Platform KHR-1 Initial Design and Its Performance Evaluation , 2002 .

[12]  Jun-Ho Oh,et al.  Walking control of the humanoid platform KHR-1 based on torque feedback control , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.