Integration of neural networks and decision tree classifiers for automated cytology screening

A squamous intraepithelial lesion (SIL) detection algorithm has been developed to process conventional Pap smears yielding a superior result (J.S.-J. Lee et al., 1990). The authors compare the object classification performance in an automated cytology screener. It consists of a Sun workstation, a DataCube image processing system, and an automatic stage/optics/illumination system. The system allows automated screening of 10 slides unattended. The main functional modules of the SIL algorithm include: image segmentation, feature extraction, and object classification. The classifiers used include neural network classifiers, statistical binary decision tree classifiers, a hybrid classifier, and the integration of multiple classifiers in an attempt to further improve algorithm performance.<<ETX>>

[1]  Robert M. Haralick,et al.  Morphologic edge detection , 1987, IEEE J. Robotics Autom..

[2]  Jeffrey A. Barnett,et al.  Computational Methods for a Mathematical Theory of Evidence , 1981, IJCAI.

[3]  J. Taylor,et al.  Computer recognition of ectocervical cells. Classification accuracy and spatial resolution. , 1977, Acta cytologica.

[4]  King-Sun Fu,et al.  Automatic classification of cervical cells using a binary tree classifier , 1983, Pattern Recognition.

[5]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[6]  Azriel Rosenfeld,et al.  Digital Picture Processing , 1976 .

[7]  Fernand Meyer Automatic screening of cytological specimens , 1986 .

[8]  M. Kurzynski The optimal strategy of a tree classifier , 1983 .

[9]  J. Tucker An image analysis system for cervical cytology automation using nuclear DNA content. , 1979, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[10]  Seymour Shlien,et al.  Multiple binary decision tree classifiers , 1990, Pattern Recognit..

[11]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[12]  Y. Imasato,et al.  Fundamental study of automatic cyto-screening for uterine cancer. III. New system of automated apparatus (CYBEST) utilizing the pattern recognition method. , 1977, Acta cytologica.

[13]  S. Y. Kung,et al.  An algebraic projection analysis for optimal hidden units size and learning rates in back-propagation learning , 1988, IEEE 1988 International Conference on Neural Networks.

[14]  David Pycock,et al.  Use of the magiscan image analyser in automated uterine cytology , 1980 .

[15]  G. P. Vooys,et al.  BioPEPR: a system for the automatic prescreening of cervical smears. , 1979, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.