Eigenvalue analysis of an irreversible random walk with skew detailed balance conditions.

An irreversible Markov-chain Monte Carlo (MCMC) algorithm with skew detailed balance conditions originally proposed by Turitsyn et al. is extended to general discrete systems on the basis of the Metropolis-Hastings scheme. To evaluate the efficiency of our proposed method, the relaxation dynamics of the slowest mode and the asymptotic variance are studied analytically in a random walk on one dimension. It is found that the performance in irreversible MCMC methods violating the detailed balance condition is improved by appropriately choosing parameters in the algorithm.

[1]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[2]  K. Hukushima,et al.  Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.

[3]  Koji Hukushima,et al.  Dynamics of One-Dimensional Ising Model without Detailed Balance Condition , 2013 .

[4]  Synge Todo,et al.  Markov chain Monte Carlo method without detailed balance. , 2010, Physical review letters.

[5]  Masayuki Ohzeki Stochastic gradient method with accelerated stochastic dynamics , 2015, ArXiv.

[6]  A. Barker Monte Carlo calculations of the radial distribution functions for a proton-electron plasma , 1965 .

[7]  K. Hukushima,et al.  An irreversible Markov-chain Monte Carlo method with skew detailed balance conditions , 2013 .

[8]  A. Ichiki,et al.  Mathematical understanding of detailed balance condition violation and its application to Langevin dynamics , 2015 .

[9]  Masayuki Ohzeki,et al.  Langevin dynamics neglecting detailed balance condition. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Michael Chertkov,et al.  Irreversible Monte Carlo Algorithms for Efficient Sampling , 2008, ArXiv.

[11]  K. Binder,et al.  A Guide to Monte Carlo Simulations in Statistical Physics , 2000 .

[12]  Radford M. Neal,et al.  ANALYSIS OF A NONREVERSIBLE MARKOV CHAIN SAMPLER , 2000 .

[13]  Ruichao Ren,et al.  Acceleration of Markov chain Monte Carlo simulations through sequential updating. , 2006, The Journal of chemical physics.

[14]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[15]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[16]  Masayuki Ohzeki,et al.  Full-order fluctuation-dissipation relation for a class of nonequilibrium steady states. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Berg,et al.  Multicanonical ensemble: A new approach to simulate first-order phase transitions. , 1992, Physical review letters.

[18]  Werner Krauth,et al.  Generalized event-chain Monte Carlo: constructing rejection-free global-balance algorithms from infinitesimal steps. , 2013, The Journal of chemical physics.

[19]  A. Ichiki,et al.  Violation of detailed balance accelerates relaxation. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[21]  Synge Todo,et al.  Geometric allocation approaches in Markov chain Monte Carlo , 2013, 1310.6615.

[22]  Werner Krauth,et al.  Event-chain Monte Carlo algorithms for hard-sphere systems. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Werner Krauth,et al.  Event-chain algorithm for the Heisenberg model: Evidence for z≃1 dynamic scaling. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Masayuki Ohzeki,et al.  Conflict between fastest relaxation of a Markov process and detailed balance condition. , 2016, Physical review. E.

[25]  Gerard T. Barkema,et al.  Monte Carlo methods beyond detailed balance , 2015 .

[26]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[27]  Wolff,et al.  Collective Monte Carlo updating for spin systems. , 1989, Physical review letters.

[28]  P. Peskun,et al.  Optimum Monte-Carlo sampling using Markov chains , 1973 .

[29]  D. Vere-Jones Markov Chains , 1972, Nature.

[30]  Martin Weigel,et al.  Non-reversible Monte Carlo simulations of spin models , 2011, Comput. Phys. Commun..

[31]  Werner Krauth,et al.  Event-chain Monte Carlo for classical continuous spin models , 2015, 1508.06541.