Advanced materials obtained by Spark Plasma Sintering

Abstract This research paper provides an illustration of how to use the Spark Plasma Sintering technology (SPS) for powder materials in order to obtain lightweight ceramics (based on alumina) and describes physical principles ensuring efficiency of high heating rates for sintering high-temperature ceramics (pure silicon carbide). Optimization of SPS modes helps to produce Al 2 O 3 /ZrO 2 ceramics with grain size of less than 400 nm, microhardness H v =24 GPa, and crack resistance K IC =4.2 MPa m 1/2 ., and ceramics of pure SiC with grain size less than 50 nm, microhardness H v =21 GPa and crack resistance coefficient K IC =3.5 MPa m 1/2 .

[1]  M. V. Silnikov,et al.  Large-scale shielding structures in low earth orbits , 2015 .

[2]  Gerry Byrne,et al.  Cutting tool wear in the machining of hardened steels , 2001 .

[3]  K. Hirota,et al.  Mechanical Properties of Hot Isostatically Pressed Zirconia-Toughened Alumina Ceramics Prepared from Coprecipitated Powders , 1993 .

[4]  D. V. Panov,et al.  Structure and properties of advanced materials obtained by Spark Plasma Sintering , 2015 .

[5]  Young‐Wook Kim,et al.  Development of Al2O3–SiC composite tool for machining application , 2004 .

[6]  A. B. Kiselev,et al.  Impact of debris particles on space structures modeling , 2010 .

[7]  M. Boldin,et al.  A comparative study of the hot pressing and spark plasma sintering of Al2O3–ZrO2–Ti(C,N) powders , 2015, Inorganic Materials.

[8]  H. Sohn,et al.  Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide - A review , 2009 .

[9]  Martin Sternitzke,et al.  Structural ceramic nanocomposites , 1997 .

[10]  G. Qiao,et al.  Plasma active sintering of silicon carbide , 2008 .

[11]  Nickolay Smirnov,et al.  Hydrogen fuel rocket engines simulation using LOGOS code , 2014 .

[12]  Nickolay Smirnov,et al.  Evaluation of craters formation in hypervelocity impact of debris particles on solid structures , 2009 .

[13]  S. K. Sadrnezhaad,et al.  Suppression of grain growth in sub-micrometer alumina via two-step sintering method , 2009 .

[14]  Nickolay Smirnov,et al.  Supercomputer predictive modeling for ensuring space flight safety , 2015 .

[15]  Zuhair A. Munir,et al.  Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process , 2011 .

[16]  Antonio Mario Locci,et al.  Consolidation/synthesis of materials by electric current activated/assisted sintering , 2009 .

[17]  Z. A. Munir,et al.  Sparking plasma sintering of nanometric tungsten carbide , 2009 .

[18]  K. Niihara New Design Concept of Structural Ceramics , 1991 .

[19]  Y. Makino,et al.  Consolidation Behavior and Mechanical Properties of SiC with Al2O3 and Yb2O3 Consolidated by SPS , 2009 .

[20]  Z. A. Munir,et al.  Fast low-temperature consolidation of bulk nanometric ceramic materials , 2006 .

[21]  K. S. Kulakov,et al.  Correction thruster development based on high-current surface discharge in vacuum , 2015 .

[22]  R. Brook,et al.  Alumina/silicon carbide nanocomposites by hybrid polymer/powder processing: Microstructures and mechanical properties , 2005 .

[23]  A. B. Kiselev,et al.  Space traffic hazards from orbital debris mitigation strategies , 2015 .

[24]  Nitish Kumar,et al.  Innovative multi-stage spark plasma sintering to obtain strong and tough ultrafine-grained ceramics , 2010 .

[25]  Jingxian Zhang,et al.  Preparation and properties of multi-wall carbon nanotube/SiC composites by aqueous tape casting , 2009 .

[26]  Stanislav Kozlov,et al.  Orbital missions safety – A survey of kinetic hazards , 2016 .

[27]  Z. A. Munir,et al.  Consolidation of Nanostructured β‐SiC by Spark Plasma Sintering , 2004 .

[28]  Gerry Byrne,et al.  Cutting tool wear in the machining of hardened steels: Part I: alumina/TiC cutting tool wear , 2001 .

[29]  M. N. Smirnova,et al.  Space debris fragments impact on multi-phase fluid filled containments , 2012 .