Resolution beyond the 'information limit' in transmission electron microscopy

THE conventional resolution of transmission electron microscopes is orders of magnitude larger than the wavelength of the electrons used. Aberrations of the objective lens corrupt spatial information on length scales below a limit known as the point resolution. Methods to correct for lens aberrations1–5 require knowledge of the phase of the waves which make up the image (this constitutes the 'phase problem'). Beyond the point resolution, information can still be transferred by the microscope, but partial coherence of the scattered beams imposes an ultimate limit (the 'information limit9) on the resolution of the transferred image information. Here we show that this limit can be overcome to obtain images of still higher resolution with a scanning transmission electron microscope. Our approach involves collecting coherent microdiffraction patterns as a function of probe position, enabling us to extract the phase differences of all neighbouring pairs of diffracted beams. Using this approach for a microscope with a conventional point resolution of 0.42 nm and a conventional information limit of 0.33 nm, we are able to form an aberration-free image that resolves an atomic spacing of 0.136 nm.

[1]  D. Gabor A New Microscopic Principle , 1948, Nature.

[2]  J. M. Cowley IMAGE CONTRAST IN A TRANSMISSION SCANNING ELECTRON MICROSCOPE , 1969 .

[3]  W. Hoppe,et al.  Beugung in inhomogenen Primärstrahlenwellenfeld. II. Lichtoptische Analogieversuche zur Phasenmessung von Gitterinterferenzen , 1969 .

[4]  W. Hoppe,et al.  Beugung im inhomogenen Primärstrahlwellenfeld. III. Amplituden- und Phasenbestimmung bei unperiodischen Objekten , 1969 .

[5]  W. Hoppe Beugung im inhomogenen Primärstrahlwellenfeld. I. Prinzip einer Phasenmessung von Elektronenbeungungsinterferenzen , 1969 .

[6]  W. Hoppe,et al.  Dynamische Theorie der Kristallstrukturanalyse durch Elektronenbeugung im inhomogenen Primärstrahlwellenfeld , 1970 .

[7]  P. Goodman,et al.  Image formation and contrast from the convergent electron beam , 1973 .

[8]  Kendall Preston,et al.  Digital processing of biomedical images , 1976 .

[9]  J. M. Cowley,et al.  Scanning transmission electron microscopy of thin specimens. , 1976, Ultramicroscopy.

[10]  R. Nathan Computer synthesis of high resolution electron micrographs , 1976 .

[11]  H. Otsu,et al.  Observations of Crystal Structure Images of Silicon , 1977 .

[12]  H. Otsu,et al.  High Resolution Electron Microscopy of Images of Atoms in Silicon Crystal Oriented in (110) , 1978 .

[13]  John C. H. Spence,et al.  Experimental High-Resolution Electron Microscopy , 1980 .

[14]  David J. Smith,et al.  A theoretical analysis of HREM imaging for 〈110〉 tetrahedral semiconductors , 1989 .

[15]  J. M. Cowley,et al.  Determination of atomic positions using electron nanodiffraction patterns from overlapping regions: Si[110] , 1989 .

[16]  David J. Smith,et al.  A systematic analysis of HREM imaging of elemental semiconductors , 1989 .

[17]  H. Lichte Electron Image Plane Off-axis Holography of Atomic Structures , 1991 .

[18]  John W Steeds,et al.  Observation of phase contrast in covergent-beam electron diffraction patterns , 1992 .

[19]  John M. Rodenburg,et al.  Two-dimensional demonstration of Wigner phase-retrieval microscopy in the STEM configuration , 1992 .

[20]  B. C. McCallum,et al.  Error analysis of crystalline ptychography in the STEM mode , 1993 .

[21]  John M. Rodenburg,et al.  Experimental tests on double-resolution coherent imaging via STEM , 1993 .

[22]  B. C. McCallum,et al.  Simultaneous reconstruction of object and aperture functions from multiple far-field intensity measurements , 1993 .

[23]  D. Van Dyck,et al.  A new approach to object wavefunction reconstruction in electron microscopy , 1993 .

[24]  Orchowski,et al.  Electron holography surmounts resolution limit of electron microscopy. , 1995, Physical review letters.