Nanophotonic particle simulation and inverse design using artificial neural networks
暂无分享,去创建一个
Li Jing | Max Tegmark | Yichen Shen | Yi Yang | John D. Joannopoulos | Marin Soljačić | John Peurifoy | Fidel Cano-Renteria | Brendan Delacy | Li Jing | Yichen Shen | J. Peurifoy | Max Tegmark | M. Soljačić | J. Joannopoulos | B. DeLacy | Yi Yang | Fidel Cano-Renteria
[1] Li Jing,et al. Nanophotonic Inverse Design Using Artificial Neural Network , 2017 .
[2] M. Meis,et al. Fast solution of direct and inverse design problems concerning furnace operation conditions in steel industry , 2012 .
[3] Bing Huang,et al. Machine learning prediction errors better than DFT accuracy , 2017, 1702.05532.
[4] Niles A. Pierce,et al. An Introduction to the Adjoint Approach to Design , 2000 .
[5] P. Barber. Absorption and scattering of light by small particles , 1984 .
[6] Geoffrey E. Hinton,et al. Learning representations by back-propagating errors , 1986, Nature.
[7] Gábor Endrédi,et al. Inverse and Algebraic Quantum Scattering Theory , 1997 .
[8] G. Henkelman,et al. Optimizing core-shell nanoparticle catalysts with a genetic algorithm. , 2009, The Journal of chemical physics.
[9] Douglas A. Keszler,et al. Inverse Design of High Absorption Thin‐Film Photovoltaic Materials , 2013 .
[10] Matthias Troyer,et al. Solving the quantum many-body problem with artificial neural networks , 2016, Science.
[11] Alexander Y. Piggott,et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer , 2015, Nature Photonics.
[12] John D Joannopoulos,et al. Coherent plasmon-exciton coupling in silver platelet-J-aggregate nanocomposites. , 2015, Nano letters.
[13] R. Johnston. Evolving better nanoparticles: Genetic algorithms for optimising cluster geometries , 2003 .
[14] A. Nemirovski,et al. Interior-point methods for optimization , 2008, Acta Numerica.