Lattice congruences, fans and Hopf algebras

We give a unified explanation of the geometric and algebraic properties of two well-known maps, one from permutations to triangulations, and another from permutations to subsets. Furthermore we give a broad generalization of the maps. Specifically for any lattice congruence of the weak order on a Coxeter group we construct a complete fan of convex cones with strong properties relative to the corresponding lattice quotient of the weak order. We show that if a family of lattice congruences On the symmetric groups satisfies certain compatibility conditions then the family defines a sub Hopf algebra of the Malvenuto-Reutenauer Hopf algebra of permutations. Such a sub Hopf algebra has a basis which is described by a type of pattern avoidance. Applying these results. we build the Malvenuto Reutenauer algebra as the limit of an infinite sequence of smaller algebras.Where the second algebra in the sequence is the Hopf algebra of non-commutative symmetric functions. We also associate both a fan and a Hopf algebra to a set of permutations which appears to be equinumerous with the Baxter permutations.

[1]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[2]  Jean-Yves Thibon,et al.  The algebra of binary search trees , 2004, Theor. Comput. Sci..

[3]  Nathan Reading Lattice and order properties of the poset of regions in a hyperplane arrangement , 2003 .

[4]  P. Mani,et al.  Shellable Decompositions of Cells and Spheres. , 1971 .

[5]  Nenosuke Funayama,et al.  109. On the Distributivity of a Lattice of Lattice-congruences , 1942 .

[6]  Nathan Reading The order dimension of the poset of regions in a hyperplane arrangement , 2003, J. Comb. Theory, Ser. A.

[7]  G. Andrews ENUMERATIVE COMBINATORICS, VOLUME 2 (Cambridge Studies in Advanced Mathematics 62) By R ICHARD P. S TANLEY : 581 pp., £45.00 (US$69.95), ISBN 0 521 56069 1 (Cambridge University Press, 1999). , 2000 .

[8]  P. Orlik,et al.  Arrangements Of Hyperplanes , 1992 .

[10]  Paul H. Edelman,et al.  Hyperplane arrangements with a lattice of regions , 1990, Discret. Comput. Geom..

[11]  Sur les treillis de Coxeter finis , 1994 .

[12]  Gil Kalai A simple way to tell a simple polytope from its graph , 1988, J. Comb. Theory, Ser. A.

[13]  Israel M. Gelfand,et al.  Noncommutative Symmetrical Functions , 1995 .

[14]  Michel Morvan,et al.  Cayley lattices of finite Coxeter groups are bounded , 2000, Electron. Notes Discret. Math..

[15]  Bernd Sturmfels,et al.  Iterated fiber polytopes , 1994 .

[16]  Jean-Louis Loday,et al.  Order Structure on the Algebra of Permutations and of Planar Binary Trees , 2001 .

[18]  S. Fomin,et al.  Y-systems and generalized associahedra , 2001, hep-th/0111053.

[19]  C. Reutenauer,et al.  Duality between Quasi-Symmetrical Functions and the Solomon Descent Algebra , 1995 .

[20]  Anders Björner,et al.  Posets, Regular CW Complexes and Bruhat Order , 1984, Eur. J. Comb..

[21]  John Milnor,et al.  On the Structure of Hopf Algebras , 1965 .

[22]  R. Carter REFLECTION GROUPS AND COXETER GROUPS (Cambridge Studies in Advanced Mathematics 29) , 1991 .

[23]  Frank Sottile,et al.  Combinatorial Hopf algebras and generalized Dehn–Sommerville relations , 2003, Compositio Mathematica.

[24]  Frank Sottile,et al.  Structure of The Malvenuto-Reutenauer Hopf Algebra of Permutations (Extended Abstract) , 2002, math/0203282.

[25]  Julian West,et al.  Generating trees and forbidden subsequences , 1996, Discret. Math..

[26]  Nathan Reading Cambrian Lattices , 2004 .

[27]  Gérard Duchamp,et al.  Noncommutative Symmetric Functions Vi: Free Quasi-Symmetric Functions and Related Algebras , 2002, Int. J. Algebra Comput..

[28]  Paul H. Edelman A partial order on the regions of ⁿ dissected by hyperplanes , 1984 .

[29]  Andrew Tonks,et al.  Relating The Associahedron And The Permutohedron , 1995 .

[30]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[31]  Nathan Reading Lattice Congruences of the Weak Order , 2004, Order.

[32]  Un analogue du monoı̈de plaxique pour les arbres binaires de recherche , 2002 .

[33]  B. Sturmfels Oriented Matroids , 1993 .

[34]  Nathan Reading,et al.  Order Dimension, Strong Bruhat Order and Lattice Properties for Posets , 2002, Order.

[35]  G. Grätzer General Lattice Theory , 1978 .

[36]  A. Björner Topological methods , 1996 .

[37]  Alain Lascoux,et al.  Noncommutative symmetric functions , 1994 .

[38]  J. Berman FREE LATTICES (Mathematical Surveys and Monographs 42) , 1997 .

[39]  Herbert S. Wilf,et al.  The patterns of permutations , 2002, Discret. Math..

[40]  Alan Day,et al.  Congruence normality: The characterization of the doubling class of convex sets , 1994 .

[42]  Michelle L. Wachs,et al.  Generalized quotients in Coxeter groups , 1988 .

[43]  M. Wachs SHELLABLE NONPURE COMPLEXES AND POSETS , 1996 .

[44]  Michelle L. Wachs,et al.  Shellable nonpure complexes and posets. II , 1996 .

[45]  J. Humphreys Reflection groups and coxeter groups , 1990 .

[46]  Jean-Louis Loday,et al.  Hopf Algebra of the Planar Binary Trees , 1998 .

[47]  Fan Chung Graham,et al.  The Number of Baxter Permutations , 1978, J. Comb. Theory, Ser. A.