Lattice congruences, fans and Hopf algebras
暂无分享,去创建一个
[1] R. Stanley. What Is Enumerative Combinatorics , 1986 .
[2] Jean-Yves Thibon,et al. The algebra of binary search trees , 2004, Theor. Comput. Sci..
[3] Nathan Reading. Lattice and order properties of the poset of regions in a hyperplane arrangement , 2003 .
[4] P. Mani,et al. Shellable Decompositions of Cells and Spheres. , 1971 .
[5] Nenosuke Funayama,et al. 109. On the Distributivity of a Lattice of Lattice-congruences , 1942 .
[6] Nathan Reading. The order dimension of the poset of regions in a hyperplane arrangement , 2003, J. Comb. Theory, Ser. A.
[7] G. Andrews. ENUMERATIVE COMBINATORICS, VOLUME 2 (Cambridge Studies in Advanced Mathematics 62) By R ICHARD P. S TANLEY : 581 pp., £45.00 (US$69.95), ISBN 0 521 56069 1 (Cambridge University Press, 1999). , 2000 .
[8] P. Orlik,et al. Arrangements Of Hyperplanes , 1992 .
[10] Paul H. Edelman,et al. Hyperplane arrangements with a lattice of regions , 1990, Discret. Comput. Geom..
[11] Sur les treillis de Coxeter finis , 1994 .
[12] Gil Kalai. A simple way to tell a simple polytope from its graph , 1988, J. Comb. Theory, Ser. A.
[13] Israel M. Gelfand,et al. Noncommutative Symmetrical Functions , 1995 .
[14] Michel Morvan,et al. Cayley lattices of finite Coxeter groups are bounded , 2000, Electron. Notes Discret. Math..
[15] Bernd Sturmfels,et al. Iterated fiber polytopes , 1994 .
[16] Jean-Louis Loday,et al. Order Structure on the Algebra of Permutations and of Planar Binary Trees , 2001 .
[18] S. Fomin,et al. Y-systems and generalized associahedra , 2001, hep-th/0111053.
[19] C. Reutenauer,et al. Duality between Quasi-Symmetrical Functions and the Solomon Descent Algebra , 1995 .
[20] Anders Björner,et al. Posets, Regular CW Complexes and Bruhat Order , 1984, Eur. J. Comb..
[21] John Milnor,et al. On the Structure of Hopf Algebras , 1965 .
[22] R. Carter. REFLECTION GROUPS AND COXETER GROUPS (Cambridge Studies in Advanced Mathematics 29) , 1991 .
[23] Frank Sottile,et al. Combinatorial Hopf algebras and generalized Dehn–Sommerville relations , 2003, Compositio Mathematica.
[24] Frank Sottile,et al. Structure of The Malvenuto-Reutenauer Hopf Algebra of Permutations (Extended Abstract) , 2002, math/0203282.
[25] Julian West,et al. Generating trees and forbidden subsequences , 1996, Discret. Math..
[26] Nathan Reading. Cambrian Lattices , 2004 .
[27] Gérard Duchamp,et al. Noncommutative Symmetric Functions Vi: Free Quasi-Symmetric Functions and Related Algebras , 2002, Int. J. Algebra Comput..
[28] Paul H. Edelman. A partial order on the regions of ⁿ dissected by hyperplanes , 1984 .
[29] Andrew Tonks,et al. Relating The Associahedron And The Permutohedron , 1995 .
[30] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[31] Nathan Reading. Lattice Congruences of the Weak Order , 2004, Order.
[32] Un analogue du monoı̈de plaxique pour les arbres binaires de recherche , 2002 .
[33] B. Sturmfels. Oriented Matroids , 1993 .
[34] Nathan Reading,et al. Order Dimension, Strong Bruhat Order and Lattice Properties for Posets , 2002, Order.
[35] G. Grätzer. General Lattice Theory , 1978 .
[36] A. Björner. Topological methods , 1996 .
[37] Alain Lascoux,et al. Noncommutative symmetric functions , 1994 .
[38] J. Berman. FREE LATTICES (Mathematical Surveys and Monographs 42) , 1997 .
[39] Herbert S. Wilf,et al. The patterns of permutations , 2002, Discret. Math..
[40] Alan Day,et al. Congruence normality: The characterization of the doubling class of convex sets , 1994 .
[42] Michelle L. Wachs,et al. Generalized quotients in Coxeter groups , 1988 .
[43] M. Wachs. SHELLABLE NONPURE COMPLEXES AND POSETS , 1996 .
[44] Michelle L. Wachs,et al. Shellable nonpure complexes and posets. II , 1996 .
[45] J. Humphreys. Reflection groups and coxeter groups , 1990 .
[46] Jean-Louis Loday,et al. Hopf Algebra of the Planar Binary Trees , 1998 .
[47] Fan Chung Graham,et al. The Number of Baxter Permutations , 1978, J. Comb. Theory, Ser. A.