Advances in Random Utility Models

In recent years, major advances have taken place in three areas of random utility modeling: (1) semiparametric estimation, (2) computational methods for multinomial probit models, and (3) computational methods for Bayesian stimation. This paper summarizes these developments and discusses their implications for practice.

[1]  F. Koppelman,et al.  APPLICATION AND INTERPRETATION OF NESTED LOGIT MODELS OF INTERCITY MODE CHOICE , 1993 .

[2]  J. Horowitz SEMIPARAMETRIC ESTIMATION OF A WORK-TRIP MODE-CHOICE MODEL / , 1993 .

[3]  Mark D. Uncles,et al.  Discrete Choice Analysis: Theory and Application to Travel Demand , 1987 .

[4]  V. Hajivassiliou,et al.  Smooth unbiased multivariate probability simulators for maximum likelihood estimation of limited dependent variable models , 1993 .

[5]  J. Geweke,et al.  Alternative computational approaches to inference in the multinomial probit model , 1994 .

[6]  D. McFadden Conditional logit analysis of qualitative choice behavior , 1972 .

[7]  C. Manski,et al.  On the Use of Simulated Frequencies to Approximate Choice Probabilities , 1981 .

[8]  Sanghamitra Das A semiparametric structural analysis of the idling of cement kilns , 1991 .

[9]  Jan Roelf Bult,et al.  Semiparametric versus Parametric Classification Models: An Application to Direct Marketing , 1993 .

[10]  J. Horowitz A Smoothed Maximum Score Estimator for the Binary Response Model , 1992 .

[11]  H. Ichimura,et al.  SEMIPARAMETRIC LEAST SQUARES (SLS) AND WEIGHTED SLS ESTIMATION OF SINGLE-INDEX MODELS , 1993 .

[12]  D. Wise,et al.  A CONDITIONAL PROBIT MODEL FOR QUALITATIVE CHOICE: DISCRETE DECISIONS RECOGNIZING INTERDEPENDENCE AND HETEROGENEOUS PREFERENCES' , 1978 .

[13]  Vassilis Argyrou Hajivassiliou,et al.  Simulating Normal Rectangle Probabilities and Their Derivatives: Effects of Vectorization , 1993, Int. J. High Perform. Comput. Appl..

[14]  B. R. Dansie PARAMETER ESTIMABILITY IN THE MULTINOMIAL PROBIT MODEL , 1985 .

[15]  C. Manski Semiparametric analysis of discrete response: Asymptotic properties of the maximum score estimator , 1985 .

[16]  Michael Lechner,et al.  Seminonparametric Estimation of Binary-Choice Models With an Application to Labor-Force Participation , 1993 .

[17]  Michael Keane,et al.  A Computationally Practical Simulation Estimator for Panel Data , 1994 .

[18]  Peter E. Rossi,et al.  An exact likelihood analysis of the multinomial probit model , 1994 .

[19]  C. Manski MAXIMUM SCORE ESTIMATION OF THE STOCHASTIC UTILITY MODEL OF CHOICE , 1975 .

[20]  D. McFadden,et al.  The method of simulated scores for the estimation of LDV models , 1998 .

[21]  D. McFadden A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration , 1989 .

[22]  D. S. Bunch,et al.  Estimability in the Multinomial Probit Model , 1989 .

[23]  Wolfgang Härdle,et al.  Applied Nonparametric Regression , 1991 .

[24]  Joel L. Horowitz,et al.  Testing a Parametric Model Against a Semiparametric Alternative , 1994, Econometric Theory.

[25]  D. Pollard,et al.  Simulation and the Asymptotics of Optimization Estimators , 1989 .

[26]  R. Sherman The Limiting Distribution of the Maximum Rank Correlation Estimator , 1993 .

[27]  Aaron K. Han Non-parametric analysis of a generalized regression model: the maximum rank correlation estimator , 1987 .

[28]  Füsun F. Gönül,et al.  Modeling Multiple Sources of Heterogeneity in Multinomial Logit Models: Methodological and Managerial Issues , 1993 .

[29]  Steven Stern,et al.  A Method for Smoothing Simulated Moments of Discrete Probabilities in Multinomial Probit Models , 1992 .

[30]  Rosa L. Matzkin Nonparametric and Distribution-Free Estimation of the Binary Threshold Crossing and the Binary Choice Models , 1992 .

[31]  D. McFadden Econometric Models of Probabilistic Choice , 1981 .

[32]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[33]  David A. Hensher,et al.  Applied discrete-choice modelling , 1980 .

[34]  D. McFadden,et al.  URBAN TRAVEL DEMAND - A BEHAVIORAL ANALYSIS , 1977 .

[35]  Joel L. Horowitz,et al.  2 Semiparametric and nonparametric estimation of quantal response models , 1993 .

[36]  Vassilis A. Hajivassiliou,et al.  Simulation Estimation Methods for Limited Dependent Variable Models , 1991 .

[37]  Jordan J. Louviere,et al.  Testing Predicted Choices Against Observations in Probabilistic Discrete-Choice Models , 1993 .