Morphology analysis of near IR sensitized polymer/fullerene organic solar cells by implementing low bandgap heteroanalogue C-/Si-PCPDTBT

In the current work, we have investigated the morphological aspects of the ternary solar cells based on host matrices of P3HT:PCBM and P3HT:ICBA, using the low bandgap polymer analogues of C- and Si-bridged PCPDTBT as near IR sensitizers, which show noticeably different performance. A direct comparison of these well-functional and poorly functional ternary blend systems provides insights into the bottlenecks of device performance and enables us to set up an initial set of design rules for ternary organic solar cells. Our study reveals the importance of surface energy as a driving force controlling sensitizer location and morphology formation of ternary blends. The interfacial surface energy results indicate that Si-PCPDTBT locates at amorphous interfaces and P3HT crystallites, while C-PCPDTBT tends to accumulate at amorphous interfaces and semi-crystalline (or agglomerated) domains of the fullerene derivatives. GIWAXS and SCLC results support this prediction where adding high content of C-PCPDTBT influences mainly the semi-crystallinity (aggregation) of the fullerene and reduces the electron mobility, but Si-PCPDTBT impacts mainly the P3HT ordering and, in turn, deteriorates the hole mobility. These findings show that the disruption of the fullerene semi-crystalline domains is more detrimental to the device performance than the disruption of the polymer domains.

[1]  Christoph J. Brabec,et al.  Organic Ternary Solar Cells: A Review , 2013, Advanced materials.

[2]  Christoph J. Brabec,et al.  Highly efficient organic tandem solar cells: a follow up review , 2013 .

[3]  C. Brabec,et al.  Transient absorption spectroscopy studies on polythiophene-fullerene bulk heterojunction organic blend films sensitized with a low-bandgap polymer. , 2013, Macromolecular rapid communications.

[4]  C. Brabec,et al.  Charge Carrier Dynamics in a Ternary Bulk Heterojunction System Consisting of P3HT, Fullerene, and a Low Bandgap Polymer , 2013 .

[5]  Christoph J. Brabec,et al.  IR sensitization of an indene-C60 bisadduct (ICBA) in ternary organic solar cells , 2013 .

[6]  Yang Yang,et al.  A polymer tandem solar cell with 10.6% power conversion efficiency , 2013, Nature Communications.

[7]  Christoph J. Brabec,et al.  Performance Enhancement of the P3HT/PCBM Solar Cells through NIR Sensitization Using a Small‐Bandgap Polymer , 2012 .

[8]  Jie Min,et al.  Near IR sensitization of polymer/fullerene solar cells , 2012, Other Conferences.

[9]  Yongfang Li,et al.  Poly(thieno[3,2-b]thiophene-alt-bithiazole): A D–A Copolymer Donor Showing Improved Photovoltaic Performance with Indene-C60 Bisadduct Acceptor , 2012 .

[10]  C. Brabec,et al.  Nano-morphology characterization of organic bulk heterojunctions based on mono and bis-adduct fullerenes , 2012 .

[11]  Steven Van Passel,et al.  The future of organic photovoltaic solar cells as a direct power source for consumer electronics , 2012 .

[12]  Christoph J. Brabec,et al.  Influence of a ternary donor material on the morphology of a P3HT:PCBM blend for organic photovoltaic devices , 2012 .

[13]  S. Jenekhe,et al.  Enhanced Open Circuit Voltage and Efficiency of Donor–Acceptor Copolymer Solar Cells by Using Indene-C60 Bisadduct , 2012 .

[14]  Bumjoon J. Kim,et al.  Controlling number of indene solubilizing groups in multiadduct fullerenes for tuning optoelectronic properties and open-circuit voltage in organic solar cells. , 2012, ACS applied materials & interfaces.

[15]  Martin A. Green,et al.  Solar cell efficiency tables (version 39) , 2012 .

[16]  Christoph J. Brabec,et al.  Determination of phase diagrams of binary and ternary organic semiconductor blends for organic photovoltaic devices , 2011 .

[17]  C. Brabec,et al.  Charge Transport and Recombination in Low‐Bandgap Bulk Heterojunction Solar Cell using Bis‐adduct Fullerene , 2011 .

[18]  C. Brabec,et al.  Determining the internal quantum efficiency of organic Bulk Heterojunctions based on mono and bis–adduct fullerenes as acceptor , 2011 .

[19]  Thomas A. Lada,et al.  Novel bis-C60 derivative compared to other fullerene bis-adducts in high efficiency polymer photovoltaic cells , 2011 .

[20]  Bumjoon J. Kim,et al.  Facile Synthesis of o-Xylenyl Fullerene Multiadducts for High Open Circuit Voltage and Efficient Polymer Solar Cells , 2011 .

[21]  Christoph J. Brabec,et al.  Inverted organic solar cells using a solution processed aluminum-doped zinc oxide buffer layer , 2011 .

[22]  Florian Kühnlenz,et al.  Correlation between polymer architecture, mesoscale structure and photovoltaic performance in side-chain-modified poly(p-arylene-ethynylene)-alt-poly(p-arylene-vinylene): PCBM bulk-heterojunction solar cells , 2011 .

[23]  H. Ohkita,et al.  Selective Dye Loading at the Heterojunction in Polymer/Fullerene Solar Cells , 2011 .

[24]  Yongfang Li,et al.  6.5% Efficiency of Polymer Solar Cells Based on poly(3‐hexylthiophene) and Indene‐C60 Bisadduct by Device Optimization , 2010, Advanced materials.

[25]  C. Brabec,et al.  Nanomorphology and Charge Generation in Bulk Heterojunctions Based on Low‐Bandgap Dithiophene Polymers with Different Bridging Atoms , 2010 .

[26]  C. Bailly,et al.  Localization of carbon nanotubes at the interface in blends of polyamide and ethylene-acrylate copolymer , 2010 .

[27]  Christoph J. Brabec,et al.  Near IR Sensitization of Organic Bulk Heterojunction Solar Cells: Towards Optimization of the Spectral Response of Organic Solar Cells , 2010 .

[28]  Zhengguo Zhu,et al.  Influence of the Bridging Atom on the Performance of a Low‐Bandgap Bulk Heterojunction Solar Cell , 2010, Advanced materials.

[29]  Alexander B. Sieval,et al.  Electron Trapping in Higher Adduct Fullerene‐Based Solar Cells , 2009 .

[30]  Edward Van Keuren,et al.  Endohedral fullerenes for organic photovoltaic devices. , 2009, Nature materials.

[31]  Christoph J. Brabec,et al.  Solution-Processed Organic Solar Cells , 2008 .

[32]  Martijn Lenes,et al.  Fullerene Bisadducts for Enhanced Open‐Circuit Voltages and Efficiencies in Polymer Solar Cells , 2008 .

[33]  Christoph J. Brabec,et al.  Design of efficient organic tandem cells: On the interplay between molecular absorption and layer sequence , 2007 .

[34]  Zhengguo Zhu,et al.  New Polymers for Optimizing Organic Photovoltaic Cell Performances , 2007 .

[35]  M. Rong,et al.  Morphology prediction of ternary polypropylene composites containing elastomer and calcium carbonate nanoparticles filler , 2007 .

[36]  Christoph J. Brabec,et al.  High Photovoltaic Performance of a Low‐Bandgap Polymer , 2006 .

[37]  Valentin D. Mihailetchi,et al.  Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells , 2005 .

[38]  D. R. Paul,et al.  Property and morphology relationships for ternary blends of polycarbonate, brittle polymers and an impact modifier , 1992 .

[39]  Shigeo Asai,et al.  Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black , 1991 .

[40]  Dongqing Li,et al.  A reformulation of the equation of state for interfacial tensions , 1990 .

[41]  D. K. Owens,et al.  Estimation of the surface free energy of polymers , 1969 .

[42]  H. Fröhlich Electronic Processes in Ionic Crystals , 1949, Nature.