Control-Oriented Flutter/Limit-Cycle-Oscillation Prediction Framework

In this work, an aeroelastic prediction framework is formulated by blending control-oriented techniques that consist of linear fractional transformation representation, identification of nonlinear operators, and stability boundary prediction for both flutter and limit-cycle-oscillation phenomena. The final product is an efficient tool devised to identify, characterize, and predict flutter/limit-cycle-oscillation conditions by taking full advantage of the information embedded in the flight data. A novel data-based amplitude- and airspeed-dependent operator is developed to consistently fit within the � -analysis framework. By exploiting the algebraic structure of the identified block-oriented models, a parameter-varying model is devised to represent its amplitude- and airspeed-dependent dynamic behavior. To illustrate this flutter/limit-cycle-oscillation prediction framework, the developed algorithms areapplied to astructurallynonlineartwo-dimensional wingsection while including uncertain stiffness parameters.

[1]  P. Beran,et al.  Uncertainty quantification of limit-cycle oscillations , 2006, J. Comput. Phys..

[2]  B. Wahlberg,et al.  Modelling and Identification with Rational Orthogonal Basis Functions , 2000 .

[3]  P. Chen,et al.  LIMIT-CYCLE-OSCILLATION STUDIES OF A FIGHTER WITH EXTERNAL STORES , 1998 .

[4]  Andrew J. Kurdila,et al.  Nonlinear Control of a Prototypical Wing Section with Torsional Nonlinearity , 1997 .

[5]  Torbjörn Wigren,et al.  Recursive prediction error identification using the nonlinear wiener model , 1993, Autom..

[6]  Richard J. Prazenica,et al.  Identifying Parameter-Dependent Volterra Kernels to Predict Aeroelastic Instabilities , 2004 .

[7]  Enrique Baeyens,et al.  Identification of block-oriented nonlinear systems using orthonormal bases , 2004 .

[8]  C. Döll,et al.  μ Tools for flight control robustness assessment , 1999 .

[9]  Arthur Gelb,et al.  Multiple-Input Describing Functions and Nonlinear System Design , 1968 .

[10]  D. M. McFarland,et al.  Triggering mechanisms of limit cycle oscillations due to aeroelastic instability , 2005 .

[11]  Mordechay Karpel Design for Active Flutter Suppression and Gust Alleviation Using State-Space Aeroelastic Modeling , 1982 .

[12]  G. Ferreres,et al.  Nonlinear analysis in the presence of parametric uncertainties , 1998 .

[13]  E. Dowell,et al.  Nonlinear Behavior of a Typical Airfoil Section with Control Surface Freeplay: a Numerical and Experimental Study , 1997 .

[14]  J. Doyle,et al.  Essentials of Robust Control , 1997 .

[15]  John W. Edwards,et al.  Transonic Shock Oscillations and Wing Flutter Calculated with an Interactive Boundary Layer Coupling Method , 1996 .

[16]  Dario H. Baldelli,et al.  Nonlinear aeroelastic/aeroservoelastic modeling by block-oriented identification , 2005 .

[17]  Martin J. Brenner,et al.  Actuator and aerodynamic modeling for high-angle-of-attack aeroservoelasticity , 1993 .

[18]  Robert W. Bunton,et al.  Limit Cycle Oscillation Characteristics of Fighter Aircraft , 2000 .

[19]  Charles M. Denegri,et al.  Limit Cycle Oscillation Flight Test Results of a Fighter with External Stores , 2000 .

[20]  Dario H. Baldelli,et al.  Robust Aeroelastic Match-Point Solutions Using Describing Function Method , 2005 .

[21]  Dario H. Baldelli,et al.  Robust Match-Point Solutions Using Describing Function Method , 2005 .

[22]  Richard J. Prazenica,et al.  Estimating Nonlinearity Using Volterra Kernels in Feedback with Linear Models , 2003 .

[23]  Yucai Zhu Identification of Hammerstein models for control using ASYM , 2000 .

[24]  K. Narendra,et al.  An iterative method for the identification of nonlinear systems using a Hammerstein model , 1966 .