Development of Navier-Stokes Solvers on Hybrid Grids

The present paper is concerned with the ongoing joint work of two research groups to exploit the advantages of hybrid grids for the numerical simulation in fluid dynamics. Topics are related to the general outfit of the object oriented programming environment, the data-structures as well as the numerical methods used. Finally, mesh generation and modification techniques for hybrid grids are presented.

[1]  H. Guillard,et al.  On the behaviour of upwind schemes in the low Mach number limit , 1999 .

[2]  A. Brandt Guide to multigrid development , 1982 .

[3]  ADAPTIVE SOLUTIONS FOR UNSTEADY LAMINAR FLOWS ON UNSTRUCTURED GRIDS , 1996 .

[4]  Alain Dervieux,et al.  A SEMI-COARSENING STRATEGY FOR UNSTRUCTURED MULTIGRID BASED ON AGGLOMERATION , 1998 .

[5]  Yannis Kallinderis,et al.  Hybrid grids for viscous flows around complex 3-D geometries including multiple bodies , 1995 .

[6]  S. Osher,et al.  Computing interface motion in compressible gas dynamics , 1992 .

[7]  V. Venkatakrishnan,et al.  A 3D AGGLOMERATION MULTIGRID SOLVER FOR THE REYNOLDS-AVERAGED NAVIER-STOKES EQUATIONS ON UNSTRUCTURED MESHES , 1995 .

[8]  M. Meinke,et al.  Time Accurate Multigrid Solutions of the Navier-Stokes Equations , 1991 .

[9]  Kazuhiro Nakahashi,et al.  A coarse grid generation algorithm for agglomeration multigrid method on unstructured grids , 1998 .

[10]  M. Liou,et al.  A New Flux Splitting Scheme , 1993 .

[11]  Arch D. Robison,et al.  C++ gets faster for scientific computing , 1996 .

[12]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[13]  Alain Dervieux,et al.  Unstructured multigridding by volume agglomeration: Current status , 1992 .

[14]  E. Turkel,et al.  Preconditioned methods for solving the incompressible low speed compressible equations , 1987 .

[15]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[16]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[17]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[18]  Dimitri J. Mavriplis,et al.  Agglomeration multigrid for two-dimensional viscous flows , 1995 .

[19]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[20]  D. Hänel,et al.  A dual time-stepping method for 3-D, viscous, incompressible vortex flows , 1993 .

[21]  D. Mavriplis UNSTRUCTURED GRID TECHNIQUES , 1997 .

[22]  Dimitri J. Mavriplis,et al.  Directional agglomeration multigrid techniques for high Reynolds number viscous flow solvers , 1998 .

[23]  R. Schwane,et al.  An Implicit Flux-vector Splitting Scheme for the Computation of Viscous Hypersonic Flows , 1989 .

[24]  Gilles Carré,et al.  An implicit multigrid method by agglomeration applied to turbulent flows , 1997 .

[25]  Jean-Antoine Désidéri,et al.  Convergence Analysis of the Defect-Correction Iteration for Hyperbolic Problems , 1995, SIAM J. Sci. Comput..

[26]  P. Wesseling An Introduction to Multigrid Methods , 1992 .

[27]  Dimitri J. Mavriplis,et al.  Directional Agglomeration Multigrid Techniques for High-Reynolds Number Viscous Flows , 1998 .

[28]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .