Scalable Production of Molybdenum Disulfide Based Biosensors.

We demonstrate arrays of opioid biosensors based on chemical vapor deposition grown molybdenum disulfide (MoS2) field effect transistors (FETs) coupled to a computationally redesigned, water-soluble variant of the μ-opioid receptor (MOR). By transferring dense films of monolayer MoS2 crystals onto prefabricated electrode arrays, we obtain high-quality FETs with clean surfaces that allow for reproducible protein attachment. The fabrication yield of MoS2 FETs and biosensors exceeds 95%, with an average mobility of 2.0 cm(2) V(-1) s(-1) (36 cm(2) V(-1) s(-1)) at room temperature under ambient (in vacuo). An atomic length nickel-mediated linker chemistry enables target binding events that occur very close to the MoS2 surface to maximize sensitivity. The biosensor response calibration curve for a synthetic opioid peptide known to bind to the wild-type MOR indicates binding affinity that matches values determined using traditional techniques and a limit of detection ∼3 nM (1.5 ng/mL). The combination of scalable array fabrication and rapid, precise binding readout enabled by the MoS2 transistor offers the prospect of a solid-state drug testing platform for rapid readout of the interactions between novel drugs and their intended protein targets.

[1]  Li Wei,et al.  Specific and reversible immobilization of NADH oxidase on functionalized carbon nanotubes. , 2010, Journal of biotechnology.

[2]  Dominique Baillargeat,et al.  From Bulk to Monolayer MoS2: Evolution of Raman Scattering , 2012 .

[3]  Da Li,et al.  Fabrication and comparison of MoS2 and WSe2 field-effect transistor biosensors , 2015 .

[4]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[5]  Lu Wang,et al.  Functionalized MoS(2) nanosheet-based field-effect biosensor for label-free sensitive detection of cancer marker proteins in solution. , 2014, Small.

[6]  Toward quantifying the electrostatic transduction mechanism in carbon nanotube molecular sensors. , 2012, Journal of the American Chemical Society.

[7]  K. Banerjee,et al.  MoS₂ field-effect transistor for next-generation label-free biosensors. , 2014, ACS nano.

[8]  Yuhei Miyauchi,et al.  Tunable photoluminescence of monolayer MoS₂ via chemical doping. , 2013, Nano letters.

[9]  Jeffery G. Saven,et al.  Scalable Production of Highly Sensitive Nanosensors Based on Graphene Functionalized with a Designed G Protein-Coupled Receptor , 2014, Nano letters.

[10]  Philip G. Collins,et al.  Single-Molecule Lysozyme Dynamics Monitored by an Electronic Circuit , 2012, Science.

[11]  Timothy C. Berkelbach,et al.  Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. , 2013, Nature Materials.

[12]  Colin Nuckolls,et al.  Debye screening in single-molecule carbon nanotube field-effect sensors. , 2011, Nano letters.

[13]  Gregory A Weiss,et al.  Dissecting single-molecule signal transduction in carbon nanotube circuits with protein engineering. , 2013, Nano letters.

[14]  H. A. Therese,et al.  Overcoming the insolubility of molybdenum disulfide nanoparticles through a high degree of sidewall functionalization using polymeric chelating ligands. , 2006, Angewandte Chemie.

[15]  Jeffery G. Saven,et al.  A Computationally Designed Water-Soluble Variant of a G-Protein-Coupled Receptor: The Human Mu Opioid Receptor , 2013, PloS one.

[16]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[17]  Characterization of a Computationally Designed Water-Soluble Human Î1⁄4 Opioid Receptor Variant Using X-ray Structural Information , 2016 .

[18]  P. Ajayan,et al.  Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate , 2011, 1111.5072.

[19]  Hugen Yan,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[20]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Rajeev Kumar,et al.  Transport properties of monolayer MoS2 grown by chemical vapor deposition. , 2014, Nano letters.

[22]  Mitchell B. Lerner,et al.  Hybrids of a genetically engineered antibody and a carbon nanotube transistor for detection of prostate cancer biomarkers. , 2012, ACS nano.

[23]  M. Terrones,et al.  Protein immobilization on carbon nanotubes via a two-step process of diimide-activated amidation , 2004 .

[24]  Bin Liu,et al.  Hysteresis in single-layer MoS2 field effect transistors. , 2012, ACS nano.

[25]  P M Campbell,et al.  Chemical vapor sensing with monolayer MoS2. , 2013, Nano letters.

[26]  Gang Hee Han,et al.  Seeded growth of highly crystalline molybdenum disulphide monolayers at controlled locations , 2015, Nature Communications.

[27]  Quantifying the effect of ionic screening with protein-decorated graphene transistors. , 2017, Biosensors & bioelectronics.

[28]  Characterization of a Computationally Designed Water-soluble Human &mgr;-Opioid Receptor Variant Using Available Structural Information , 2014, Anesthesiology.

[29]  F. Braet,et al.  Carbon Nanomaterials in Biosensors: Should You Use Nanotubes or Graphene? , 2010 .

[30]  Chongwu Zhou,et al.  High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. , 2014, ACS nano.

[31]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[32]  A. Martell,et al.  Inner Complex Chelates. I. Analogs of Bisacetylacetoneethylenediimine and its Metal Chelates1,2 , 1955 .

[33]  Alan Gelperin,et al.  Biomimetic chemical sensors using nanoelectronic readout of olfactory receptor proteins. , 2011, ACS nano.

[34]  W. Jentzen,et al.  Nonplanar porphyrins and their significance in proteins , 1998 .

[35]  R. Frederickson Enkephalin pentapeptides--a review of current evidence for a physiological role in vertebrate neurotransmission. , 1977, Life sciences.

[36]  Mitchell B. Lerner,et al.  Detecting Lyme disease using antibody-functionalized single-walled carbon nanotube transistors. , 2013, Biosensors & bioelectronics.

[37]  A. Kis,et al.  Nonvolatile memory cells based on MoS2/graphene heterostructures. , 2013, ACS nano.

[38]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[39]  P. L. McEuen,et al.  The valley Hall effect in MoS2 transistors , 2014, Science.

[40]  Wei Zhou,et al.  General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors. , 2015, Nano letters.

[41]  S. Sligar,et al.  Membrane protein assembly into Nanodiscs , 2010, FEBS letters.

[42]  Lain-Jong Li,et al.  High‐Gain Phototransistors Based on a CVD MoS2 Monolayer , 2013, Advanced materials.

[43]  P. Emmerson,et al.  Binding affinity and selectivity of opioids at mu, delta and kappa receptors in monkey brain membranes. , 1994, The Journal of pharmacology and experimental therapeutics.

[44]  K. M. Carroll,et al.  Nonperturbative chemical modification of graphene for protein micropatterning. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[45]  D. Tsai,et al.  Monolayer MoS2 heterojunction solar cells. , 2014, ACS nano.

[46]  Arindam Ghosh,et al.  Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. , 2013, Nature nanotechnology.

[47]  Michael S. Strano,et al.  Synthesis of Nickel−Nitrilotriacetic Acid Coupled Single-Walled Carbon Nanotubes for Directed Self-Assembly with Polyhistidine-Tagged Proteins , 2008 .

[48]  Marco Bernardi,et al.  Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. , 2013, Nano letters.