暂无分享,去创建一个
[1] Ricardo Ruiz-Baier,et al. Locking-Free Finite Element Methods for Poroelasticity , 2016, SIAM J. Numer. Anal..
[2] D. Elsworth,et al. Multiporosity/multipermeability approach to the simulation of naturally fractured reservoirs , 1993 .
[3] Barry Lee,et al. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..
[4] Son-Young Yi. Convergence analysis of a new mixed finite element method for Biot's consolidation model , 2014 .
[5] Johannes Kraus,et al. Parameter-Robust Convergence Analysis of Fixed-Stress Split Iterative Method for Multiple-Permeability Poroelasticity Systems , 2018, Multiscale Model. Simul..
[6] Abimael F. D. Loula,et al. On stability and convergence of finite element approximations of biot's consolidation problem , 1994 .
[7] Douglas N. Arnold,et al. Mixed finite elements for elasticity , 2002, Numerische Mathematik.
[8] I. Babuska. Error-bounds for finite element method , 1971 .
[9] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[10] Jeonghun J. Lee,et al. Parameter-Robust Discretization and Preconditioning of Biot's Consolidation Model , 2015, SIAM J. Sci. Comput..
[11] M. Biot. General Theory of Three‐Dimensional Consolidation , 1941 .
[12] R. S. Falk,et al. PRECONDITIONING IN H (div) AND APPLICATIONS , 1997 .
[13] Andrea Toselli,et al. Domain decomposition methods : algorithms and theory , 2005 .
[14] Ricardo Oyarzúa,et al. Conservative discontinuous finite volume and mixed schemes for a new four-field formulation in poroelasticity , 2020 .
[15] Mary F. Wheeler,et al. A coupling of mixed and continuous Galerkin finite element methods for poroelasticity II: the discrete-in-time case , 2007 .
[16] Andrew J. Wathen,et al. Analysis of Preconditioners for Saddle-Point Problems , 2004, SIAM J. Sci. Comput..
[17] P. Raviart,et al. Finite Element Approximation of the Navier-Stokes Equations , 1979 .
[18] Mary F. Wheeler,et al. A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: the continuous in time case , 2007 .
[19] Johannes Kraus,et al. Conservative discretizations and parameter‐robust preconditioners for Biot and multiple‐network flux‐based poroelasticity models , 2018, Numer. Linear Algebra Appl..
[20] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .
[21] L. Zikatanov,et al. Robust Block Preconditioners for Biot's Model , 2017, CSE 2017.
[22] D. Arnold,et al. Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.
[23] M. Fortin,et al. Mixed Finite Element Methods and Applications , 2013 .
[24] Johannes Kraus,et al. Uniformly Stable Discontinuous Galerkin Discretization and Robust Iterative Solution Methods for the Brinkman Problem , 2016, SIAM J. Numer. Anal..
[25] Jinchao Xu,et al. Robust block preconditioners for poroelasticity , 2020, Computer Methods in Applied Mechanics and Engineering.
[26] J. Kraus,et al. Parameter-robust stability of classical three-field formulation of Biot's consolidation model , 2017, 1706.00724.
[27] K. Terzaghi. Erdbaumechanik : auf bodenphysikalischer Grundlage , 1925 .
[28] Johannes Kraus,et al. Parameter-robust Uzawa-type iterative methods for double saddle point problems arising in Biot's consolidation and multiple-network poroelasticity models , 2019, ArXiv.
[29] R.W. Ehrich,et al. Computer image processing and recognition , 1981, Proceedings of the IEEE.
[30] Jinchao Xu,et al. An Extended Galerkin analysis in finite element exterior calculus , 2021, Math. Comput..
[31] Ricardo Ruiz-Baier,et al. Robust preconditioners for perturbed saddle-point problems and conservative discretizations of Biot's equations utilizing total pressure , 2020, SIAM J. Sci. Comput..
[32] M. Burger,et al. Iterative regularization of parameter identification problems by sequential quadratic programming methods , 2002 .
[33] L. Stupelis. Some problems of vector analysis , 1998 .
[34] Kent-André Mardal,et al. Preconditioning discretizations of systems of partial differential equations , 2011, Numer. Linear Algebra Appl..
[35] R. A. Silverman,et al. The Mathematical Theory of Viscous Incompressible Flow , 2014 .
[36] Ludmil T. Zikatanov,et al. A robust multigrid method for discontinuous Galerkin discretizations of Stokes and linear elasticity equations , 2016, Numerische Mathematik.
[37] M. Wheeler,et al. A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity , 2008 .
[38] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[39] R. Glowinski. Finite element methods for incompressible viscous flow , 2003 .
[40] Hantaek Bae. Navier-Stokes equations , 1992 .
[41] D. Braess. Stability of saddle point problems with penalty , 1996 .
[42] Jinchao Xu,et al. Nodal Auxiliary Space Preconditioning in H(curl) and H(div) Spaces , 2007, SIAM J. Numer. Anal..
[43] Jeonghun J. Lee,et al. Robust Error Analysis of Coupled Mixed Methods for Biot’s Consolidation Model , 2015, J. Sci. Comput..
[44] Abimael F. D. Loula,et al. Improved accuracy in finite element analysis of Biot's consolidation problem , 1992 .
[45] Necas Jindrich. Les Méthodes directes en théorie des équations elliptiques , 2017 .
[46] Marie E. Rognes,et al. A Mixed Finite Element Method for Nearly Incompressible Multiple-Network Poroelasticity , 2018, SIAM J. Sci. Comput..
[47] V. A. Solonnikov,et al. Some problems of vector analysis and generalized formulations of boundary-value problems for the Navier-Stokes equations , 1978 .
[48] Panayot S. Vassilevski,et al. Preconditioning Mixed Finite Element Saddle-point Elliptic Problems , 1996, Numer. Linear Algebra Appl..
[49] Ronald H. W. Hoppe,et al. Finite element methods for Maxwell's equations , 2005, Math. Comput..
[50] Gary R. Consolazio,et al. Finite Elements , 2007, Handbook of Dynamic System Modeling.
[51] Larry L. Schumaker,et al. Finite Elements: Theory, Fast Solvers, and Applications in Elasticity Theory , 2007 .
[52] Philip E. Gill,et al. Practical optimization , 1981 .
[53] Yiannis Ventikos,et al. On the Validation of a Multiple-Network Poroelastic Model Using Arterial Spin Labeling MRI Data , 2019, Front. Comput. Neurosci..
[54] Brett J Tully,et al. Cerebral water transport using multiple-network poroelastic theory: application to normal pressure hydrocephalus , 2010, Journal of Fluid Mechanics.
[55] Yue Kuen Kwok,et al. Saddlepoint Approximation Methods in Financial Engineering , 2018 .
[56] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[57] R. Nicolaides. Existence, Uniqueness and Approximation for Generalized Saddle Point Problems , 1982 .
[58] Poromechanics , 2020 .
[59] Ludmil T. Zikatanov,et al. Preconditioning Heterogeneous H(div) Problems by Additive Schur Complement Approximation and Applications , 2016, SIAM J. Sci. Comput..
[60] Matthias Heinkenschloss,et al. Preconditioners for Karush-Kuhn-Tucker Matrices Arising in the Optimal Control of Distributed Systems , 1998 .
[61] M. Biot. THEORY OF ELASTICITY AND CONSOLIDATION FOR A POROUS ANISOTROPIC SOLID , 1955 .