A new framework for the stability analysis of perturbed saddle-point problems and applications in poromechanics

In this paper we prove a new abstract stability result for perturbed saddle-point problems based on a norm fitting technique. We derive the stability condition according to Babuška’s theory from a small inf-sup condition, similar to the famous Ladyzhenskaya-Babuška-Brezzi (LBB) condition, and the other standard assumptions in Brezzi’s theory, in a combined abstract norm. The construction suggests to form the latter from individual fitted norms that are composed from proper seminorms. This abstract framework not only allows for simpler (shorter) proofs of many stability results but also guides the design of parameter-robust norm-equivalent preconditioners. These benefits are demonstrated on mixed variational formulations of generalized Poisson, Stokes, vector Laplace and Biot’s equations.

[1]  Ricardo Ruiz-Baier,et al.  Locking-Free Finite Element Methods for Poroelasticity , 2016, SIAM J. Numer. Anal..

[2]  D. Elsworth,et al.  Multiporosity/multipermeability approach to the simulation of naturally fractured reservoirs , 1993 .

[3]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[4]  Son-Young Yi Convergence analysis of a new mixed finite element method for Biot's consolidation model , 2014 .

[5]  Johannes Kraus,et al.  Parameter-Robust Convergence Analysis of Fixed-Stress Split Iterative Method for Multiple-Permeability Poroelasticity Systems , 2018, Multiscale Model. Simul..

[6]  Abimael F. D. Loula,et al.  On stability and convergence of finite element approximations of biot's consolidation problem , 1994 .

[7]  Douglas N. Arnold,et al.  Mixed finite elements for elasticity , 2002, Numerische Mathematik.

[8]  I. Babuska Error-bounds for finite element method , 1971 .

[9]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[10]  Jeonghun J. Lee,et al.  Parameter-Robust Discretization and Preconditioning of Biot's Consolidation Model , 2015, SIAM J. Sci. Comput..

[11]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[12]  R. S. Falk,et al.  PRECONDITIONING IN H (div) AND APPLICATIONS , 1997 .

[13]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[14]  Ricardo Oyarzúa,et al.  Conservative discontinuous finite volume and mixed schemes for a new four-field formulation in poroelasticity , 2020 .

[15]  Mary F. Wheeler,et al.  A coupling of mixed and continuous Galerkin finite element methods for poroelasticity II: the discrete-in-time case , 2007 .

[16]  Andrew J. Wathen,et al.  Analysis of Preconditioners for Saddle-Point Problems , 2004, SIAM J. Sci. Comput..

[17]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[18]  Mary F. Wheeler,et al.  A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: the continuous in time case , 2007 .

[19]  Johannes Kraus,et al.  Conservative discretizations and parameter‐robust preconditioners for Biot and multiple‐network flux‐based poroelasticity models , 2018, Numer. Linear Algebra Appl..

[20]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[21]  L. Zikatanov,et al.  Robust Block Preconditioners for Biot's Model , 2017, CSE 2017.

[22]  D. Arnold,et al.  Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.

[23]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[24]  Johannes Kraus,et al.  Uniformly Stable Discontinuous Galerkin Discretization and Robust Iterative Solution Methods for the Brinkman Problem , 2016, SIAM J. Numer. Anal..

[25]  Jinchao Xu,et al.  Robust block preconditioners for poroelasticity , 2020, Computer Methods in Applied Mechanics and Engineering.

[26]  J. Kraus,et al.  Parameter-robust stability of classical three-field formulation of Biot's consolidation model , 2017, 1706.00724.

[27]  K. Terzaghi Erdbaumechanik : auf bodenphysikalischer Grundlage , 1925 .

[28]  Johannes Kraus,et al.  Parameter-robust Uzawa-type iterative methods for double saddle point problems arising in Biot's consolidation and multiple-network poroelasticity models , 2019, ArXiv.

[29]  R.W. Ehrich,et al.  Computer image processing and recognition , 1981, Proceedings of the IEEE.

[30]  Jinchao Xu,et al.  An Extended Galerkin analysis in finite element exterior calculus , 2021, Math. Comput..

[31]  Ricardo Ruiz-Baier,et al.  Robust preconditioners for perturbed saddle-point problems and conservative discretizations of Biot's equations utilizing total pressure , 2020, SIAM J. Sci. Comput..

[32]  M. Burger,et al.  Iterative regularization of parameter identification problems by sequential quadratic programming methods , 2002 .

[33]  L. Stupelis Some problems of vector analysis , 1998 .

[34]  Kent-André Mardal,et al.  Preconditioning discretizations of systems of partial differential equations , 2011, Numer. Linear Algebra Appl..

[35]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 2014 .

[36]  Ludmil T. Zikatanov,et al.  A robust multigrid method for discontinuous Galerkin discretizations of Stokes and linear elasticity equations , 2016, Numerische Mathematik.

[37]  M. Wheeler,et al.  A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity , 2008 .

[38]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[39]  R. Glowinski Finite element methods for incompressible viscous flow , 2003 .

[40]  Hantaek Bae Navier-Stokes equations , 1992 .

[41]  D. Braess Stability of saddle point problems with penalty , 1996 .

[42]  Jinchao Xu,et al.  Nodal Auxiliary Space Preconditioning in H(curl) and H(div) Spaces , 2007, SIAM J. Numer. Anal..

[43]  Jeonghun J. Lee,et al.  Robust Error Analysis of Coupled Mixed Methods for Biot’s Consolidation Model , 2015, J. Sci. Comput..

[44]  Abimael F. D. Loula,et al.  Improved accuracy in finite element analysis of Biot's consolidation problem , 1992 .

[45]  Necas Jindrich Les Méthodes directes en théorie des équations elliptiques , 2017 .

[46]  Marie E. Rognes,et al.  A Mixed Finite Element Method for Nearly Incompressible Multiple-Network Poroelasticity , 2018, SIAM J. Sci. Comput..

[47]  V. A. Solonnikov,et al.  Some problems of vector analysis and generalized formulations of boundary-value problems for the Navier-Stokes equations , 1978 .

[48]  Panayot S. Vassilevski,et al.  Preconditioning Mixed Finite Element Saddle-point Elliptic Problems , 1996, Numer. Linear Algebra Appl..

[49]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[50]  Gary R. Consolazio,et al.  Finite Elements , 2007, Handbook of Dynamic System Modeling.

[51]  Larry L. Schumaker,et al.  Finite Elements: Theory, Fast Solvers, and Applications in Elasticity Theory , 2007 .

[52]  Philip E. Gill,et al.  Practical optimization , 1981 .

[53]  Yiannis Ventikos,et al.  On the Validation of a Multiple-Network Poroelastic Model Using Arterial Spin Labeling MRI Data , 2019, Front. Comput. Neurosci..

[54]  Brett J Tully,et al.  Cerebral water transport using multiple-network poroelastic theory: application to normal pressure hydrocephalus , 2010, Journal of Fluid Mechanics.

[55]  Yue Kuen Kwok,et al.  Saddlepoint Approximation Methods in Financial Engineering , 2018 .

[56]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[57]  R. Nicolaides Existence, Uniqueness and Approximation for Generalized Saddle Point Problems , 1982 .

[58]  Poromechanics , 2020 .

[59]  Ludmil T. Zikatanov,et al.  Preconditioning Heterogeneous H(div) Problems by Additive Schur Complement Approximation and Applications , 2016, SIAM J. Sci. Comput..

[60]  Matthias Heinkenschloss,et al.  Preconditioners for Karush-Kuhn-Tucker Matrices Arising in the Optimal Control of Distributed Systems , 1998 .

[61]  M. Biot THEORY OF ELASTICITY AND CONSOLIDATION FOR A POROUS ANISOTROPIC SOLID , 1955 .