Power approximation for computing ( s , S ) policies using service level
暂无分享,去创建一个
[1] A. F. Veinott,et al. Computing Optimal (s, S) Inventory Policies , 1965 .
[2] Charles Mosier,et al. A Revision of the Power Approximation for Computing (s, S) Policies , 1984 .
[3] Raymond P. Lutz,et al. Decision rules for inventory management , 1967 .
[4] P. Beesack,et al. A Finite Horizon Dynamic Inventory Model with a Stockout Constraint , 1967 .
[5] H. M. Wagner,et al. An Empirical Study of Exactly and Approximately Optimal Inventory Policies , 1965 .
[6] R. Ehrhardt. The Power Approximation for Computing (s, S) Inventory Policies , 1979 .
[7] Andrew Ehrenberg,et al. Progress on a Simplified Model of Stationary Purchasing Behaviour , 1966 .
[8] D. Iglehart. Optimality of (s, S) Policies in the Infinite Horizon Dynamic Inventory Problem , 1963 .
[9] E. S. Gardner,et al. Using Optimal Policy Surfaces to Analyze Aggregate Inventory Tradeoffs , 1979 .
[10] E. Naddor. Optimal and Heuristic Decisions in Single-and Multi-Item Inventory Systems , 1975 .
[11] Helmut Schneider,et al. Methods for Determining the Re-order Point of an (s, S) Ordering Policy when a Service Level is Specified , 1978 .
[12] Jr. Arthur F. Veinott. The Status of Mathematical Inventory Theory , 1966 .
[13] Evan L. Porteus. Numerical Comparisons of Inventory Policies for Periodic Review Systems , 1985, Oper. Res..