Interface catalytic reduction of alumina by nickle for the aluminum nanowire growth: Dynamics observed by in situ TEM

[1]  Chao‐Jun Li,et al.  One-pot synthesis of toluene from methane and methanol catalyzed by GaN nanowire , 2023, Nano Research.

[2]  F. Xiao,et al.  Enhanced CO2 utilization in dry reforming of methane achieved through nickel-mediated hydrogen spillover in zeolite crystals , 2022, Nature Catalysis.

[3]  Meiling Liu,et al.  Ni(OH)2 nanoparticles encapsulated in conductive nanowire array for high-performance alkaline seawater oxidation , 2022, Nano Research.

[4]  Sangsoo Park,et al.  Electrochemical biosensors: perspective on functional nanomaterials for on-site analysis , 2020, Biomaterials Research.

[5]  X. Tu,et al.  Plasma-Enhanced Catalytic Synthesis of Ammonia over a Ni/Al2O3 Catalyst at Near-Room Temperature: Insights into the Importance of the Catalyst Surface on the Reaction Mechanism , 2019, ACS catalysis.

[6]  K. Dick,et al.  Independent Control of Nucleation and Layer Growth in Nanowires , 2019, ACS nano.

[7]  Younan Xia,et al.  One-Dimensional Metal Nanostructures: From Colloidal Syntheses to Applications. , 2019, Chemical reviews.

[8]  Shuhong Yu,et al.  Stability and protection of nanowire devices in air , 2018, Nano Research.

[9]  O. Brandt,et al.  Electronic properties of wurtzite GaAs: A correlated structural, optical, and theoretical analysis of the same polytypic GaAs nanowire , 2018, Nano Research.

[10]  K. Oh,et al.  Investigation of the growth and in situ heating transmission electron microscopy analysis of Ag 2 S-catalyzed ZnS nanowires , 2018 .

[11]  Hyuck-Mo Lee,et al.  Synthesis of oxide-free aluminum nanoparticles for application to conductive film , 2018, Nanotechnology.

[12]  Songsong Li,et al.  In-situ synthesis of CoP co-catalyst decorated Zn0.5Cd0.5S photocatalysts with enhanced photocatalytic hydrogen production activity under visible light irradiation , 2017 .

[13]  C. Müller,et al.  Contrasting the Role of Ni/Al2O3 Interfaces in Water-Gas Shift and Dry Reforming of Methane. , 2017, Journal of the American Chemical Society.

[14]  Tae Wook Kim,et al.  CO and CO2 methanation over Ni catalysts supported on alumina with different crystalline phases , 2017, Korean Journal of Chemical Engineering.

[15]  N. Phuc,et al.  Catalytic performance of La-Ni/Al2O3 catalyst for CO2 reforming of ethanol , 2017 .

[16]  Kai Nordlund,et al.  Thermal Oxidation of Size-Selected Pd Nanoparticles Supported on CuO Nanowires: The Role of the CuO–Pd Interface , 2017 .

[17]  J. VandeVondele,et al.  Catalyst support effects on hydrogen spillover , 2017, Nature.

[18]  X. Gu,et al.  In Situ Environmental TEM in Imaging Gas and Liquid Phase Chemical Reactions for Materials Research , 2016, Advanced materials.

[19]  E. Bertagnolli,et al.  Electrical transport properties of single-crystal Al nanowires , 2016, Nanotechnology.

[20]  T. Yanagishita,et al.  Fabrication of aluminum nanowires by mechanical deformation of Al using anodic porous alumina molds , 2016 .

[21]  Ming Ma,et al.  Controllable Hydrocarbon Formation from the Electrochemical Reduction of CO2 over Cu Nanowire Arrays. , 2016, Angewandte Chemie.

[22]  J. Tersoff,et al.  Atomic Resolution in Situ Imaging of a Double-Bilayer Multistep Growth Mode in Gallium Nitride Nanowires. , 2016, Nano letters.

[23]  A. H. Rose,et al.  Aluminum Nanowire Arrays via Directed Assembly. , 2015, Nano letters.

[24]  Jean-Jacques Delaunay,et al.  CuO nanowire/microflower/nanowire modified Cu electrode with enhanced electrochemical performance for non-enzymatic glucose sensing , 2015, Nanotechnology.

[25]  Y. Sakka,et al.  In Situ TEM Observation of a Microcrucible Mechanism of Nanowire Growth , 2014, Science.

[26]  G. Hutchings,et al.  Oxidation of benzyl alcohol and carbon monoxide using gold nanoparticles supported on MnO2 nanowire microspheres. , 2014, Chemistry.

[27]  C. Hébert,et al.  Reduction of nickel oxide particles by hydrogen studied in an environmental TEM , 2013, Journal of Materials Science.

[28]  F. Ross,et al.  In situ TEM creation and electrical characterization of nanowire devices. , 2012, Nano letters.

[29]  G. Yushin,et al.  Chemical vapor deposition of aluminum nanowires on metal substrates for electrical energy storage applications. , 2012, ACS nano.

[30]  John P. Sullivan,et al.  In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode , 2010, Science.

[31]  M. Kang,et al.  Single crystalline aluminum nanowires with ideal resistivity , 2010 .

[32]  Yugang Sun,et al.  Silver nanowires--unique templates for functional nanostructures. , 2010, Nanoscale.

[33]  J. Tersoff,et al.  Structure, growth kinetics, and ledge flow during vapor-solid-solid growth of copper-catalyzed silicon nanowires. , 2010, Nano letters.

[34]  S. Linic,et al.  Engineering selectivity in heterogeneous catalysis: Ag nanowires as selective ethylene epoxidation catalysts. , 2008, Journal of the American Chemical Society.

[35]  Xinli Zhu,et al.  Structure and reactivity of plasma treated Ni/Al2O3 catalyst for CO2 reforming of methane , 2008 .

[36]  A. Majumdar,et al.  Enhanced Thermoelectric Performance in Rough Silicon Nanowires , 2008 .

[37]  Umasankar Yogeswaran,et al.  A Review on the Electrochemical Sensors and Biosensors Composed of Nanowires as Sensing Material , 2008, Sensors.

[38]  H. Weitering,et al.  Hard superconductivity of a soft metal in the quantum regime , 2006, cond-mat/0601641.

[39]  K. Arutyunov,et al.  Size dependent breakdown of superconductivity in ultranarrow nanowires. , 2005, Nano letters.

[40]  Xiangfeng Duan,et al.  Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires , 2001, Science.

[41]  Charles M. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[42]  Peidong Yang,et al.  Direct Observation of Vapor-Liquid-Solid Nanowire Growth , 2001 .

[43]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.

[44]  Yu Huang,et al.  Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices , 2001, Nature.

[45]  A. Kjekshus,et al.  The possible reduction of alumina to aluminum using hydrogen , 2000 .

[46]  S. Weller,et al.  Studies of alumina I. Reaction with hydrogen at elevated temperatures , 1971 .

[47]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[48]  Ze Zhang,et al.  Recent advances in gas-involved in situ studies via transmission electron microscopy , 2017, Nano Research.

[49]  Paul T. Williams,et al.  Catalytic Steam Gasification of Biomass for a Sustainable Hydrogen Future: Influence of Catalyst Composition , 2014 .

[50]  Jong‐Sung Yu,et al.  Al nanorod thin films as anode electrode for Li ion rechargeable batteries , 2013 .

[51]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.