Optoelectronic Intelligence

To design and construct hardware for general intelligence, we must consider principles of both neuroscience and very-large-scale integration. For large neural systems capable of general intelligence, the attributes of photonics for communication and electronics for computation are complementary and interdependent. Using light for communication enables high fan-out as well as low-latency signaling across large systems with no traffic-dependent bottlenecks. For computation, the inherent nonlinearities, high speed, and low power consumption of Josephson circuits are conducive to complex neural functions. Operation at 4\,K enables the use of single-photon detectors and silicon light sources, two features that lead to efficiency and economical scalability. Here I sketch a concept for optoelectronic hardware, beginning with synaptic circuits, continuing through wafer-scale integration, and extending to systems interconnected with fiber-optic white matter, potentially at the scale of the human brain and beyond.

[1]  W. Abraham Metaplasticity: tuning synapses and networks for plasticity , 2008, Nature Reviews Neuroscience.

[2]  B. Baars A cognitive theory of consciousness , 1988 .

[3]  Sae Woo Nam,et al.  Circuit designs for superconducting optoelectronic loop neurons , 2018, Journal of Applied Physics.

[4]  Danielle S. Bassett,et al.  Multi-scale brain networks , 2016, NeuroImage.

[5]  Jim Euchner Design , 2014, Catalysis from A to Z.

[6]  Dirk Englund,et al.  Deep learning with coherent nanophotonic circuits , 2017, 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems & Steep Transistors Workshop (E3S).

[7]  A. Pérez-Villalba Rhythms of the Brain, G. Buzsáki. Oxford University Press, Madison Avenue, New York (2006), Price: GB £42.00, p. 448, ISBN: 0-19-530106-4 , 2008 .

[8]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[9]  Zhiping Zhou,et al.  On-chip light sources for silicon photonics , 2015, Light: Science & Applications.

[10]  Sae Woo Nam,et al.  Superconducting optoelectronic circuits for neuromorphic computing , 2016, ArXiv.

[11]  Gert Cauwenberghs,et al.  Hierarchical Address Event Routing for Reconfigurable Large-Scale Neuromorphic Systems , 2017, IEEE Transactions on Neural Networks and Learning Systems.

[12]  Steve B. Furber,et al.  The SpiNNaker Project , 2014, Proceedings of the IEEE.

[13]  Christof Koch,et al.  Computation and the single neuron , 1997, Nature.

[14]  Paul R. Prucnal,et al.  Broadcast and Weight: An Integrated Network For Scalable Photonic Spike Processing , 2014, Journal of Lightwave Technology.

[15]  Nelson Spruston,et al.  Dendritic integration: 60 years of progress , 2015, Nature Neuroscience.

[16]  P. Prucnal,et al.  NEUROMORPHIC PHOTONICS , 2017 .

[17]  A. N. Tait,et al.  A superconducting thermal switch with ultrahigh impedance for interfacing superconductors to semiconductors , 2019, Nature Electronics.

[18]  Jeffrey M. Shainline,et al.  Fluxonic Processing of Photonic Synapse Events , 2019, IEEE Journal of Selected Topics in Quantum Electronics.

[19]  P V Simonov,et al.  [Consciousness and the brain]. , 1993, Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova.

[20]  I. Garcés,et al.  Silicon-on-insulator chip-to-chip coupling via out-of-plane or vertical grating couplers. , 2012, Applied optics.

[21]  Sae Woo Nam,et al.  Design, fabrication, and metrology of 10 × 100 multi-planar integrated photonic routing manifolds for neural networks , 2018, APL Photonics.

[22]  Tetsuya Asai,et al.  Pulsed Neural Networks Consisting of Single-Flux-Quantum Spiking Neurons , 2007 .

[23]  Di Liang,et al.  Recent progress in lasers on silicon , 2010 .

[24]  Patrick Crotty,et al.  Synchronization dynamics on the picosecond timescale in coupled Josephson junction neurons , 2016, Physical review. E.

[25]  Johannes Schemmel,et al.  Six Networks on a Universal Neuromorphic Computing Substrate , 2012, Front. Neurosci..

[26]  Harish Bhaskaran,et al.  On-chip photonic synapse , 2017, Science Advances.

[27]  Kwabena Boahen,et al.  Point-to-point connectivity between neuromorphic chips using address events , 2000 .

[28]  T. Sejnowski,et al.  A universal scaling law between gray matter and white matter of cerebral cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Sae Woo Nam,et al.  All-silicon light-emitting diodes waveguide-integrated with superconducting single-photon detectors. , 2017, Applied physics letters.

[30]  Stanislas Dehaene Consciousness and the Brain , 2014 .

[31]  Rajeev J. Ram,et al.  Single-chip microprocessor that communicates directly using light , 2015, Nature.

[32]  L. Abbott,et al.  Cascade Models of Synaptically Stored Memories , 2005, Neuron.

[33]  Wulfram Gerstner,et al.  Spiking Neuron Models , 2002 .

[34]  Jeffrey M. Shainline,et al.  The Largest Cognitive Systems Will be Optoelectronic , 2018, 2018 IEEE International Conference on Rebooting Computing (ICRC).

[35]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[36]  W. Paul,et al.  Computer Architecture , 2000, Springer Berlin Heidelberg.

[37]  Andrew S. Cassidy,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014, Science.

[38]  R. W. Keyes,et al.  The wire-limited logic chip , 1982 .

[39]  Arvind Kumar,et al.  Toward Human-Scale Brain Computing Using 3D Wafer Scale Integration , 2017, ACM J. Emerg. Technol. Comput. Syst..

[40]  D. Plenz,et al.  Spontaneous cortical activity in awake monkeys composed of neuronal avalanches , 2009, Proceedings of the National Academy of Sciences.

[41]  L. Abbott,et al.  Synaptic computation , 2004, Nature.

[42]  F. Marsili,et al.  Detecting single infrared photons with 93% system efficiency , 2012, 1209.5774.

[43]  W. Gerstner,et al.  Spike-Timing-Dependent Plasticity: A Comprehensive Overview , 2012, Front. Syn. Neurosci..

[44]  Sae Woo Nam,et al.  Multi-planar amorphous silicon photonics with compact interplanar couplers, cross talk mitigation, and low crossing loss , 2017 .

[45]  Hong Wang,et al.  Loihi: A Neuromorphic Manycore Processor with On-Chip Learning , 2018, IEEE Micro.

[46]  S. Bressler,et al.  Large-scale brain networks in cognition: emerging methods and principles , 2010, Trends in Cognitive Sciences.

[47]  D. Plenz,et al.  The organizing principles of neuronal avalanches: cell assemblies in the cortex? , 2007, Trends in Neurosciences.

[48]  D. Long Networks of the Brain , 2011 .

[49]  Michael L. Schneider,et al.  Ultralow power artificial synapses using nanotextured magnetic Josephson junctions , 2018, Science Advances.

[50]  Indranil Chakraborty,et al.  Toward Fast Neural Computing using All-Photonic Phase Change Spiking Neurons , 2018, Scientific Reports.

[51]  Ernesto Estrada,et al.  A First Course in Network Theory , 2015 .