Expedient route to volatile zirconium metal-organic chemical vapor deposition precursors using amide synthons and implementation in yttria-stabilized zirconia film growth

[1]  K. Sato,et al.  Intergranular transport properties in c-axis oriented YBa2Cu3Oy polycrystalline films , 1997 .

[2]  P. Seidel,et al.  Formation of Single-crystal CoSi_2 Buffer Layers on Si(100) Substrates by High Dose Co Ion Implantation for the Deposition of YBa_2Cu_3O_7−x Thin Films , 1997 .

[3]  T. Tseng,et al.  Characterization of yttria-stabilized zirconia thin films grown by planar magnetron sputtering , 1997 .

[4]  Dean J. Miller,et al.  Thin films for superconducting electronics: Precursor performance issues, deposition mechanisms, and superconducting phase formation-processing strategies in the growth of Tl_2Ba_2CaCu_2O_8 films by metal-organic chemical vapor deposition , 1997 .

[5]  T. Marks,et al.  New materials for superconducting electronics: Epitaxial growth of LaSrGaO4 and PrSrGaO4 dielectric thin films by MOCVD† , 1997 .

[6]  R. D. Gryse,et al.  Yttria-stabilized zirconia thin films grown by r.f. magnetron sputtering from an oxide target , 1997 .

[7]  R. Gerbasi,et al.  Synthesis and crystal structure of zirconium complexes with fluorinated tetradentate β-ketoiminate ligands , 1997 .

[8]  John D. Budai,et al.  Epitaxial YBa2Cu3O7 on Biaxially Textured Nickel (001): An Approach to Superconducting Tapes with High Critical Current Density , 1996, Science.

[9]  I. Hirabayashi,et al.  Preparation of YBa 2 Cu 3 O 7−δ thin film by laser-assisted metal-organic chemical vapor deposition using highly volatile fluorocarbon-based Ba source , 1996 .

[10]  R. D. Gryse,et al.  Yttria-stabilized zirconia thin films grown by reactive r.f. magnetron sputtering , 1996 .

[11]  S. Horita,et al.  Heteroepitaxial growth of yttria-stabilized zirconia film on oxidized silicon by reactive sputtering , 1996 .

[12]  W. Desisto,et al.  Gas phase ultraviolet spectroscopy of high‐temperature superconductor precursors for chemical vapor deposition processing , 1996 .

[13]  R. Russo,et al.  Ion-assisted pulsed-laser deposition for the fabrication of Y-Ba-Cu-O multilayer structures using oriented intermediate layers of YSZ and CeO2 , 1996 .

[14]  Julia M. Phillips,et al.  Substrate selection for high‐temperature superconducting thin films , 1996 .

[15]  M. Cima,et al.  The development of biaxial alignment in yttria-stabilized zirconia films fabricated by ion beam assisted deposition , 1996 .

[16]  W. Herrmann,et al.  Volatile Metal Alkoxides according to the Concept of Donor Functionalization , 1995 .

[17]  Ian H. Campbell,et al.  Properties of YBa2Cu3O7−δ thick films on flexible buffered metallic substrates , 1995 .

[18]  T. Marks Coordination chemistry routes to films for superconducting electronics , 1995 .

[19]  T. Leedham From Proposal To Product: Scaling Up The Chemical Synthesis of MOCVD Oxide Precursors , 1995 .

[20]  P. J. Reucroft,et al.  Deposition and structural characterization of ZrO 2 and yttria-stabilized ZrO 2 films by chemical vapor deposition , 1995 .

[21]  D. Schulz,et al.  MOCVD Routes to Thin Metal Oxide Films for superconducting electronics , 1994 .

[22]  S. Desu,et al.  Metal-organic chemical vapor deposition of ZrO 2 films using Zr(thd) 4 as precursors , 1994 .

[23]  I. Povey,et al.  Chemical vapour deposition of ZrO2 thin films monitored by IR spectroscopy , 1994 .

[24]  D. Cardwell,et al.  MOCVD of high-quality YBa2Cu3O7 –δ films: in situ preparation of fluorine-free layers from a fluorinated barium source , 1994 .

[25]  G. Wahl,et al.  Deposition of ZrO2 and Y2O3-stabilized ZrO2 from β-diketonates , 1993 .

[26]  Eui-Tae Kim,et al.  Characterization of zirconium dioxide film formed by plasma enhanced metal-organic chemical vapor deposition , 1993 .

[27]  N. Tanabe,et al.  In‐plane aligned YBa2Cu3O7−x thin films deposited on polycrystalline metallic substrates , 1992 .

[28]  R. H. Holm,et al.  An initial approach to biologically related bridged assemblies: pyridinethiolate-linked iron Fe4S4-Fe complex systems , 1991 .

[29]  G. Wahl,et al.  High-Tc YBa2Cu3O7-δ prepared by chemical vapour deposition , 1990 .

[30]  D. Fork,et al.  Epitaxial yttria‐stabilized zirconia on hydrogen‐terminated Si by pulsed laser deposition , 1990 .

[31]  A. S. Kao,et al.  Modification of zirconia film properties by low‐energy ion bombardment during reactive ion‐beam deposition , 1990 .

[32]  C. Floriani,et al.  cis- and trans-Dichloro-derivatives of six- and seven-co-ordinate zirconium and hafnium bonded to quadridentate Schiff-base ligands. Crystal structures of [Zr(acen)Cl2(thf)], [M(salphen)Cl2(thf)]·0.5thf, [M(acen)Cl2], (M = Zr or Hf), and [Zr(msal)Cl2][acen =N,N′-ethylenebis(acetylacetoneiminate), sa , 1990 .

[33]  J. Zhao,et al.  Organometallic Chemical Vapor Deposition: Strategies and Progress in the Preparation of Thin Films of Superconductors Having High Critical Temperatures , 1989 .

[34]  Arthur H. Heuer,et al.  Transformation Toughening in ZrO2‐Containing Ceramics , 1987 .

[35]  E. P. Butler Transformation-toughened zirconia ceramics , 1985 .

[36]  R. D. Archer,et al.  Transition-metal eight-coordination. 13. Synthesis, characterization, and crystal and molecular structure of the Schiff-base chelate bis(N,N'-disalicylidene-1,2-phenylenediamino)zirconium(IV) benzene solvate , 1979 .

[37]  M. Balog,et al.  The Characteristics of Growth of Films of Zirconium and Hafnium Oxides (ZrO2, HfO2) by Thermal Decomposition of Zirconium and Hafnium β‐Diketonate Complexes in the Presence and Absence of Oxygen , 1979 .

[38]  D. C. Bradley,et al.  Eight-co-ordinated zirconium(IV) Schiff-base compounds: an X-ray study , 1970 .