Geometric control condition for the wave equation with a time-dependent observation domain

We characterize the observability property (and, by duality, the controllability and the stabilization) of the wave equation on a Riemannian manifold $\Omega,$ with or without boundary, where the observation (or control) domain is time-varying. We provide a condition ensuring observability, in terms of propagating bicharacteristics. This condition extends the well-known geometric control condition established for fixed observation domains. As one of the consequences, we prove that it is always possible to find a time-dependent observation domain of arbitrarily small measure for which the observability property holds. From a practical point of view, this means that it is possible to reconstruct the solutions of the wave equation with only few sensors (in the Lebesgue measure sense), at the price of moving the sensors in the domain in an adequate way.We provide several illustrating examples, in which the observationdomain is the rigid displacement in $\Omega$ of a fixed domain, withspeed $v,$ showing that the observability property depends both on $v$and on the wave speed. Despite the apparent simplicity of some of ourexamples, the observability property can depend on nontrivial arithmeticconsiderations.

[1]  P. Gérard Microlocal defect measures , 1991 .

[2]  L. Hörmander The Analysis of Linear Partial Differential Operators III , 2007 .

[3]  D. Russell Boundary Value Control of the Higher-Dimensional Wave Equation , 1971 .

[4]  G. Lebeau,et al.  Equation des Ondes Amorties , 1996 .

[5]  J. Lions Exact controllability, stabilization and perturbations for distributed systems , 1988 .

[6]  Kim Dang Phung,et al.  Polynomial decay rate for the dissipative wave equation , 2003, math/0312281.

[7]  N. Burq Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel , 1998 .

[8]  C. Bardos,et al.  Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary , 1992 .

[9]  Carlos Castro,et al.  Controllability of the Linear One-dimensional Wave Equation with Inner Moving Forces , 2014, SIAM J. Control. Optim..

[10]  Energy decay for damped wave equations on partially rectangular domains , 2006, math/0601195.

[11]  A. Haraux Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps , 1989 .

[12]  L. Tartar H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[13]  Richard B. Melrose,et al.  Singularities of boundary value problems. I , 1978 .

[14]  Jeffrey Rauch,et al.  Exponential Decay of Solutions to Hyperbolic Equations in Bounded Domains , 1974 .

[15]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[16]  P. Gérard,et al.  Condition ncessaire et suffisante pour la contrlabilit exacte des ondes , 1997 .

[17]  S. Nonnenmacher,et al.  Sharp polynomial decay rates for the damped wave equation on the torus , 2012, 1210.6879.

[18]  G. Lebeau,et al.  Contróle Exact De Léquation De La Chaleur , 1995 .

[19]  G. Lebeau,et al.  Mesures de défaut de compacité, application au système de Lamé , 2001 .

[20]  Exponential stabilization without geometric control , 2010, 1011.1699.

[21]  P. Grisvard Singularities in Boundary Value Problems , 1992 .