Grid-Enhanced Polylithic Modeling and Solution Approaches for Hard Optimization Problems

We present a grid enhancement approach (GEA) for hard mixed integer or nonlinear non-convex problems to improve and stabilize the quality of the solution if only short time is available to compute it, e.g., in operative planning or scheduling problems. Branch-and-bound algorithms and polylithic modeling & solution approaches (PMSA) – tailor-made techniques to compute primal feasible points – usually involve problem-specific control parameters p. Depending on data instances, different choices of p may lead to variations in run time or solution quality. It is not possible to determine optimal settings of p a priori. The key idea of the GEA is to exploit parallelism on the application level and to run the polylithic approach on several cores of the CPU, or on a cluster of computers in parallel for different settings of p. Especially scheduling problems benefit strongly from the GEA, but it is also useful for computing Pareto fronts of multi-criteria problems or computing minimal convex hulls of circles and spheres. In addition to improving the quality of the solution, the GEA helps us maintain a test suite of data instances for the real world optimization problem, to improve the best solution found so far, and to calibrate the tailor-made polylithic approach. Josef Kallrath Department of Astronomy, University of Florida, Gainesville, FL 32611, USA, e-mail: jkallrath@ufl.edu and e-mail: josef.kallrath@web.de Robert Blackburn Discrete Optimization and Logistics, Karlsruhe Institute of Technology, 76133 Karlsruhe, Germany, e-mail: robert.blackburn@alumni.uni-heidelberg.de Julius Näumann Discrete Optimization and Logistics, Technical University of Darmstadt, 76133 Darmstadt, Germany e-mail: julius.naumann@stud.tu-darmstadt.de

[1]  Yuji Shinano,et al.  FiberSCIP - A Shared Memory Parallelization of SCIP , 2018, INFORMS J. Comput..

[2]  Panos M. Pardalos,et al.  Parallel Search for Combinatorial Optimization : Genetic Algorithms , Simulated Annealing , Tabu Search and GRASP ? , 1995 .

[3]  Richard S. Laundy Implementation of Parallel Branch-and-bound Algorithms in XPRESS-MP , 1999 .

[4]  Olga Guschinskaya,et al.  Matheuristics - Hybridizing Metaheuristics and Mathematical Programming , 2010, Matheuristics.

[5]  Laurence A. Wolsey,et al.  Production Planning by Mixed Integer Programming , 2010 .

[6]  Enrique Alba,et al.  Parallel metaheuristics: recent advances and new trends , 2012, Int. Trans. Oper. Res..

[7]  Yuji Shinano,et al.  Effectiveness of Parallelizing the ILOG-CPLEX Mixed Integer Optimizer in the PUBB2 Framework , 2003, Euro-Par.

[8]  Josef Kallrath,et al.  Polylithic modeling and solution approaches using algebraic modeling systems , 2011, Optim. Lett..

[9]  Jean-Charles Régin,et al.  Parallel Constraint Programming , 2018, Handbook of Parallel Constraint Reasoning.

[10]  Andrzej P. Wierzbicki,et al.  A parallel multiple reference point approach for multi-objective optimization , 2010, Eur. J. Oper. Res..

[11]  Timo Berthold,et al.  A First Implementation of ParaXpress: Combining Internal and External Parallelization to Solve MIPs on Supercomputers , 2016, ICMS.

[12]  Timo Berthold,et al.  Parallelization of the FICO Xpress-Optimizer , 2016, ICMS.

[13]  Michel Gendreau,et al.  Handbook of Metaheuristics , 2010 .

[14]  Josef Kallrath Algebraic Modeling Systems: Modeling and Solving Real World Optimization Problems , 2014 .

[15]  Yoshua Bengio,et al.  Algorithms for Hyper-Parameter Optimization , 2011, NIPS.

[16]  Enrique Alba,et al.  Measuring the Performance of Parallel Metaheuristics , 2005 .

[17]  C. Floudas,et al.  Production Scheduling of a Large-Scale Industrial Batch Plant. I. Short-Term and Medium-Term Scheduling , 2006 .

[18]  Enrique Alba,et al.  Metaheuristics and Parallelism , 2005 .

[19]  Y. Colombani,et al.  Multiple models and parallel solving with Mosel , 2006 .

[20]  Frits C. R. Spieksma,et al.  Exact and heuristic methods for placing ships in locks , 2014, Eur. J. Oper. Res..

[21]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[22]  Nicolas Jozefowiez,et al.  Parallel and Hybrid Models for Multi-objective Optimization: Application to the Vehicle Routing Problem , 2002, PPSN.

[23]  Vittorio Maniezzo,et al.  Matheuristics: Hybridizing Metaheuristics and Mathematical Programming , 2009 .

[24]  Benjamin Müller,et al.  The SCIP Optimization Suite 5.0 , 2017, 2112.08872.

[25]  Timo Berthold,et al.  ParaXpress: an experimental extension of the FICO Xpress-Optimizer to solve hard MIPs on supercomputers , 2018, Optim. Methods Softw..

[26]  Christodoulos A. Floudas,et al.  ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations , 2014, Journal of Global Optimization.

[27]  N. Sahinidis,et al.  Solving Global Optimization Problems with Baron , 2001 .

[28]  Enrique Alba,et al.  Parallel Metaheuristics: A New Class of Algorithms , 2005 .

[29]  Anton V. Eremeev,et al.  Reducing the Number of Changeover Constraints in a MIP Formulation of a Continuous-Time Scheduling Problem , 2014 .

[30]  Thorsten Koch,et al.  Solving Open MIP Instances with ParaSCIP on Supercomputers Using up to 80,000 Cores , 2016, 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

[31]  Steffen Rebennack,et al.  Solving real-world cutting stock-problems in the paper industry: Mathematical approaches, experience and challenges , 2014, Eur. J. Oper. Res..

[32]  Teodor Gabriel Crainic,et al.  Parallel Metaheuristics and Cooperative Search , 2018, Handbook of Metaheuristics.

[33]  J. Kallrath,et al.  Minimal Surface Convex Hulls of Spheres , 2018 .

[34]  Josef Kallrath,et al.  Packing circles into perimeter-minimizing convex hulls , 2019, J. Glob. Optim..

[35]  Maurice Herlihy,et al.  The Art of Multiprocessor Programming, Revised Reprint , 2012 .

[36]  Oswaldo Trelles,et al.  Bioinformatics and Parallel Metaheuristics , 2005 .

[37]  Thorsten Koch,et al.  ParaSCIP: A Parallel Extension of SCIP , 2010, CHPC.

[38]  Christodoulos A. Floudas,et al.  Production scheduling of a large-scale industrial continuous plant: Short-term and medium-term scheduling , 2009, Comput. Chem. Eng..