ZnO-PCBM bilayers as electron transport layers in low-temperature processed perovskite solar cells.

[1]  Mingkui Wang Exploring stability of formamidinium lead trihalide for solar cell application. , 2017, Science bulletin.

[2]  Hongzheng Chen,et al.  Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. , 2015, Journal of the American Chemical Society.

[3]  C. Brabec,et al.  Development of Efficient and Stable Inverted Bulk Heterojunction (BHJ) Solar Cells Using Different Metal Oxide Interfaces , 2013, Materials.

[4]  A. Kahn,et al.  P-type doping of organic wide band gap materials by transition metal oxides: A case-study on Molybdenum trioxide , 2009 .

[5]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[6]  Yongfang Li,et al.  Fullerene derivative acceptors for high performance polymer solar cells. , 2011, Physical chemistry chemical physics : PCCP.

[7]  M. McLachlan,et al.  Surface Structure Modification of ZnO and the Impact on Electronic Properties , 2016, Advanced materials.

[8]  Jinhyun Kim,et al.  Formation, location and beneficial role of PbI2 in lead halide perovskite solar cells , 2017 .

[9]  Yixin Zhao,et al.  Controllable Sequential Deposition of Planar CH₃NH₃PbI₃ Perovskite Films via Adjustable Volume Expansion. , 2015, Nano letters.

[10]  Jiaying Wu,et al.  Nanoscale Structure–Property Relationships in Low-Temperature Solution-Processed Electron Transport Layers for Organic Photovoltaics , 2017 .

[11]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[12]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[13]  Elizabeth von Hauff,et al.  Study of field effect mobility in PCBM films and P3HT : PCBM blends , 2005 .

[14]  Nripan Mathews,et al.  Charge Accumulation and Hysteresis in Perovskite‐Based Solar Cells: An Electro‐Optical Analysis , 2015 .

[15]  Henry J Snaith,et al.  Metal-halide perovskites for photovoltaic and light-emitting devices. , 2015, Nature nanotechnology.

[16]  Kwanghee Lee,et al.  Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer , 2014 .

[17]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[18]  Martin A. Green,et al.  Solar cell efficiency tables (version 48) , 2016 .

[19]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[20]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[21]  Wei Zhang,et al.  Carrier trapping and recombination: the role of defect physics in enhancing the open circuit voltage of metal halide perovskite solar cells , 2016 .

[22]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[23]  S. Feng,et al.  Environmentally friendly, aqueous processed ZnO as an efficient electron transport layer for low temperature processed metal–halide perovskite photovoltaics , 2018 .

[24]  M. McLachlan,et al.  Low‐Temperature Solution‐Processed Electron Transport Layers for Inverted Polymer Solar Cells , 2016 .

[25]  Alex K.-Y. Jen,et al.  Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells , 2015 .

[26]  Timothy L. Kelly,et al.  Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO , 2015 .

[27]  Shihe Yang,et al.  High-quality perovskite in thick scaffold: a core issue for hole transport material-free perovskite solar cells , 2016 .

[28]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.