High-efficiency fluorescence collection for NV- center ensembles in diamond.

The negatively charged nitrogen vacancy (NV-) center ensembles in diamond have been demonstrated to be a promising platform for quantum metrology, but the poor fluorescence collection efficiency of a microscope objective limits the sensitivity of the NV- based sensors. Here we present a method for increasing the collected fluorescence intensity with a total internal reflection (TIR) lens. The detected fluorescence intensity is increased by approximately a factor of 56 compared with detection using a microscope objective with NA = 0.55, leading to a collection efficiency of 47.7% ± 3.1%. The signal-to-noise ratio is improved by a factor of 7.6 using the TIR lens. The proposed method is of great significance for collecting fluorescence from NV- centers in a large volume and can be used in weak fluorescence detection systems.

[1]  L. Hollenberg,et al.  Sensing electric fields using single diamond spins , 2011, 1103.3432.

[2]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[3]  F. Jelezko,et al.  Compact integrated magnetometer based on nitrogen-vacancy centres in diamond , 2019, Diamond and Related Materials.

[4]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[5]  R. Walsworth,et al.  Simultaneous Broadband Vector Magnetometry Using Solid-State Spins , 2018, Physical Review Applied.

[6]  Edward H. Chen,et al.  Chirped circular dielectric gratings for near-unity collection efficiency from quantum emitters in bulk diamond , 2017 .

[7]  J. Tetienne,et al.  Magnetometry with nitrogen-vacancy defects in diamond , 2013, Reports on progress in physics. Physical Society.

[8]  R. Walsworth,et al.  Anti-reflection coating for nitrogen-vacancy optical measurements in diamond , 2012 .

[9]  D. Budker,et al.  Light narrowing of magnetic resonances in ensembles of nitrogen-vacancy centers in diamond , 2012, 1210.5574.

[10]  J. Tetienne,et al.  Nanoscale magnetic field mapping with a single spin scanning probe magnetometer , 2011, 1108.4438.

[11]  Dirk Englund,et al.  Quantum nanophotonics in diamond [Invited] , 2016 .

[12]  J. Rarity,et al.  Nanofabricated solid immersion lenses registered to single emitters in diamond , 2010, 1012.1135.

[13]  Dirk Englund,et al.  Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. , 2014, Nano letters.

[14]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[15]  Alexander Huck,et al.  Optimised frequency modulation for continuous-wave optical magnetic resonance sensing using nitrogen-vacancy ensembles. , 2017, Optics express.

[16]  O. Arcizet,et al.  Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity , 2011 .

[17]  Kerry A. Johnson,et al.  Robust high-dynamic-range vector magnetometry with nitrogen-vacancy centers in diamond , 2018, Applied Physics Letters.

[18]  Paola Cappellaro,et al.  Stable three-axis nuclear-spin gyroscope in diamond , 2012, 1205.1494.

[19]  Dirk Englund,et al.  Three megahertz photon collection rate from an NV center with millisecond spin coherence , 2014, 1409.3068.

[20]  R. Weissleder,et al.  Single cell magnetic imaging using a quantum diamond microscope , 2015, Nature Methods.

[21]  Yan Wang,et al.  Dependence of high density nitrogen-vacancy center ensemble coherence on electron irradiation doses and annealing time , 2017 .

[22]  L. Hollenberg,et al.  Electric-field sensing using single diamond spins , 2011 .

[23]  Edward H. Chen,et al.  High-sensitivity spin-based electrometry with an ensemble of nitrogen-vacancy centers in diamond , 2017, 1703.07517.

[24]  Lukin,et al.  Magnetic field imaging with nitrogen-vacancy ensembles , 2011, 1207.3339.

[25]  F. Reinhard,et al.  Nanoengineered diamond waveguide as a robust bright platform for nanomagnetometry using shallow nitrogen vacancy centers. , 2014, Nano letters.

[26]  P. Maurer,et al.  Nanometre-scale thermometry in a living cell , 2013, Nature.

[27]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[28]  K. Thompson,et al.  A new family of optical systems employing φ-polynomial surfaces. , 2011, Optics express.

[29]  Jian Zhang,et al.  High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond , 2014, 1410.6893.

[30]  M. Lukin,et al.  Efficient photon detection from color centers in a diamond optical waveguide , 2012, 1201.0674.

[31]  Jiancheng Fang,et al.  Inertial rotation measurement with atomic spins: From angular momentum conservation to quantum phase theory , 2016 .

[32]  D. Budker,et al.  Gyroscopes based on nitrogen-vacancy centers in diamond , 2012, 1205.0093.