Strange-metal behavior in La$_{2-x}$Sr$_x$CuO$_4$ beyond the stripe-percolation transition

The nature of the normal state of cuprate superconductors continues to stimulate considerable speculation. Of particular interest has been the linear temperature dependence of the in-plane resistivity in the low-temperature limit, which violates the prediction for a Fermi liquid. We present evidence that the behavior is a consequence of an inhomogeneous mixture of quasiparticles and strongly-correlated patches of spin and charge stripes. In the case of La$_{2-x}$Sr$_x$CuO$_4$, the strange-metal behavior is observed only for doped-hole concentrations that exceed the percolation threshold for stripe correlations, where we observe that the resistivity measured perpendicular to the planes develops a metallic temperature dependence.

[1]  S. Ciuchi,et al.  Strange metal behavior from incoherent carriers scattered by local moments , 2023, 2306.12496.

[2]  S. Feng,et al.  Low-temperature T-linear resistivity in the strange-metal phase of overdoped cuprate superconductors due to umklapp scattering from a spin excitation , 2022, 2211.03083.

[3]  M. Katsnelson,et al.  Superfluid density and two-component conductivity in hole-doped cuprates , 2022, Frontiers in Physics.

[4]  Zhuoyu Chen,et al.  Differentiated roles of Lifshitz transition on thermodynamics and superconductivity in La2-xSrxCuO4 , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[5]  M. Horio,et al.  Competition between spin ordering and superconductivity near the pseudogap boundary in La2xSr, 2022, Physical Review B.

[6]  N. Hussey,et al.  Stranger than metals , 2022, Science.

[7]  T. Kondo,et al.  Puddle formation and persistent gaps across the non-mean-field breakdown of superconductivity in overdoped (Pb,Bi)2Sr2CuO6+δ , 2022, Nature Materials.

[8]  S. Chi,et al.  Strongly-overdoped La$_{2-x}$Sr$_x$CuO$_4$: Evidence for Josephson-coupled grains of strongly-correlated superconductor , 2022, 2205.01702.

[9]  M. Baggioli,et al.  Colloquium : Hydrodynamics and holography of charge density wave phases , 2022, Reviews of Modern Physics.

[10]  T. Devereaux,et al.  Fluctuating intertwined stripes in the strange metal regime of the Hubbard model , 2022, Physical Review B.

[11]  S. Uchida,et al.  Spectral weight of hole-doped cuprates across the pseudogap critical point , 2021, Physical Review Research.

[12]  A. Georges,et al.  Sachdev-Ye-Kitaev models and beyond: Window into non-Fermi liquids , 2021, Reviews of Modern Physics.

[13]  Wéi Wú,et al.  Non-Fermi liquid phase and linear-in-temperature scattering rate in overdoped two-dimensional Hubbard model , 2021, Proceedings of the National Academy of Sciences of the United States of America.

[14]  S. Hartnoll,et al.  Colloquium : Planckian dissipation in metals , 2021, Reviews of Modern Physics.

[15]  K. Held,et al.  Explaining the pseudogap through damping and antidamping on the Fermi surface by imaginary spin scattering , 2021, Communications Physics.

[16]  R. Fumagalli,et al.  Strange metal behaviour from charge density fluctuations in cuprates , 2021, Communications Physics.

[17]  C. Castro,et al.  Dissipation-driven strange metal behavior , 2020, Communications Physics.

[18]  Patrick A. Lee,et al.  Low-temperature T -linear resistivity due to umklapp scattering from a critical mode , 2020, Physical Review B.

[19]  T. Kondo,et al.  Incoherent transport across the strange-metal regime of overdoped cuprates , 2020, Nature.

[20]  J. Tranquada Cuprate superconductors as viewed through a striped lens , 2020, 2102.02257.

[21]  C. P'epin,et al.  Strange metal from incoherent bosons , 2020, Physical Review B.

[22]  C. Varma Colloquium : Linear in temperature resistivity and associated mysteries including high temperature superconductivity , 2020 .

[23]  D. Song,et al.  Incoherent strange metal sharply bounded by a critical doping in Bi2212 , 2019, Science.

[24]  S. Hayden,et al.  Link between magnetism and resistivity upturn in cuprates: a thermal conductivity study of La$_{2-x}$Sr$_x$CuO$_4$ , 2019, 1910.08126.

[25]  J. Debray,et al.  Hidden magnetism at the pseudogap critical point of a cuprate superconductor , 2019, Nature Physics.

[26]  J. Lorenzana,et al.  Doping-dependent competition between superconductivity and polycrystalline charge density waves , 2019, SciPost Physics.

[27]  S. Sachdev,et al.  Theory of a Planckian Metal. , 2019, Physical review letters.

[28]  G. Gu,et al.  Phase diagram of Bi2Sr2CaCu2O8+δ revisited , 2018, Nature Communications.

[29]  J. Zaanen Planckian dissipation, minimal viscosity and the transport in cuprate strange metals , 2018, SciPost Physics.

[30]  M. Stone,et al.  Low-energy antiferromagnetic spin fluctuations limit the coherent superconducting gap in cuprates , 2018, Physical Review B.

[31]  T. Devereaux,et al.  Strange metallicity in the doped Hubbard model , 2018, Science.

[32]  M. Dion,et al.  Universal T-linear resistivity and Planckian dissipation in overdoped cuprates , 2018, Nature Physics.

[33]  S. Hayden,et al.  Three-Dimensional Fermi Surface of Overdoped La-Based Cuprates. , 2018, Physical review letters.

[34]  T. Sasagawa,et al.  Emergence of superconductivity in the cuprates via a universal percolation process , 2017, Nature Communications.

[35]  T. M. Rice,et al.  Umklapp scattering as the origin of T -linear resistivity in the normal state of high- T c cuprate superconductors , 2017, 1707.05666.

[36]  A. Bollinger,et al.  Dependence of the critical temperature in overdoped copper oxides on superfluid density , 2016, Nature.

[37]  M. R. Norman,et al.  From quantum matter to high-temperature superconductivity in copper oxides , 2015, Nature.

[38]  H. Eisaki,et al.  Simultaneous Transitions in Cuprate Momentum-Space Topology and Electronic Symmetry Breaking , 2014, Science.

[39]  A. Bollinger,et al.  Emergence of superconductivity from the dynamically heterogeneous insulating state in La(2-x)Sr(x)CuO4. , 2012, Nature materials.

[40]  Y. Maeno,et al.  Quantum oscillations and high carrier mobility in the delafossite PdCoO(2). , 2012, Physical review letters.

[41]  Y. Koike,et al.  Curie-like paramagnetism due to incomplete Zhang-Rice singlet formation in La2-xSrxCuO4 , 2012, 1206.1884.

[42]  J. Tranquada,et al.  Spin-stripe density varies linearly with the hole content in single-layer Bi2+xSr2-xCuO6+y cuprate superconductors. , 2012, Physical review letters.

[43]  L. Taillefer,et al.  Quantum critical point for stripe order: An organizing principle of cuprate superconductivity , 2012, 1204.0490.

[44]  Yue Wang,et al.  Phase-fluctuating superconductivity in overdoped La2-xSrxCuO4 , 2011 .

[45]  M. Randeria,et al.  Superconductor-to-metal quantum phase transition in overdoped La 2-x Sr x CuO 4 , 2010, 1010.1243.

[46]  L. Taillefer Scattering and Pairing in Cuprate Superconductors , 2010, 1003.2972.

[47]  B. Vignolle,et al.  Dichotomy in the T-linear resistivity in hole-doped cuprates , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[48]  S. Hayden,et al.  Anomalous Criticality in the Electrical Resistivity of La2–xSrxCuO4 , 2009, Science.

[49]  B. Spivak,et al.  Theory of quantum metal to superconductor transitions in highly conducting systems , 2008, 0803.2902.

[50]  J. Stahn,et al.  Tuning competing orders in La2-xSrxCuO4 cuprate superconductors by the application of an external magnetic field , 2007, 0712.2181.

[51]  Z. Hussain,et al.  Low-energy electronic structure of the high-Tc cuprates La2−xSrxCuO4 studied by angle-resolved photoemission spectroscopy , 2006, cond-mat/0610759.

[52]  R. Birgeneau,et al.  Magnetic Neutron Scattering in Hole-Doped Cuprate Superconductors( Neutron and X-ray Scattering at the Frontiers and Gen Shirane) , 2006, cond-mat/0604667.

[53]  J. Tallon Evidence for a generic quantum transition in high-Tc cuprates. , 2006 .

[54]  D. Pines,et al.  The pseudogap: friend or foe of high T c ? , 2005, cond-mat/0507031.

[55]  G. Gu,et al.  Spin susceptibility of underdoped cuprate superconductors: Insights from a stripe-ordered crystal , 2005, cond-mat/0503417.

[56]  R. Birgeneau,et al.  Direct relation between the low-energy spin excitations and superconductivity of overdoped high-Tc superconductors. , 2003, Physical review letters.

[57]  S. Sugai,et al.  Carrier-density-dependent momentum shift of the coherent peak and the LO phonon mode in p -type high- T c superconductors , 2003 .

[58]  S. Sachdev Order and quantum phase transitions in the cuprate superconductors , 2002, cond-mat/0211005.

[59]  T. Xiang,et al.  Evidence for a generic quantum transition in high-T c cuprates , 2002, cond-mat/0204106.

[60]  A. Golnik,et al.  Anomalous peak in the superconducting condensate density of cuprate high- T(c) superconductors at a unique doping state. , 2000, Physical review letters.

[61]  J. Loram,et al.  The doping dependence of T* – what is the real high-Tc phase diagram? , 2000, cond-mat/0005063.

[62]  Y. Endoh,et al.  Pseudogap of Optimally Doped La 1.85 Sr 0.15 CuO 4 Observed by Ultrahigh-Resolution Photoemission Spectroscopy , 1999 .

[63]  H. Alloul,et al.  Normal State Magnetic Properties of Ni and Zn Substituted in YBa2Cu3O6+x: Hole-Doping Dependence , 1999, cond-mat/9904295.

[64]  M. Kastner,et al.  Neutron-scattering study of static antiferromagnetic correlations in La 2-x Sr x Cu 1-y Zn y O 4 , 1999 .

[65]  K. Tamasaku,et al.  Doping dependent density of states and pseudogap behavior in La1−xSrxCuO4 , 1998, cond-mat/9806341.

[66]  M. Kastner,et al.  Doping dependence of the spatially modulated dynamical spin correlations and the superconducting-transition temperature in La 2-x Sr x CuO 4 , 1998 .

[67]  Kimura,et al.  Insulator-to-Metal Crossover in the Normal State of La2-xSrxCuO 4 Near Optimum Doping. , 1996, Physical review letters.

[68]  Uchida,et al.  Universal superconductor-insulator transition and Tc depression in Zn-substituted high-Tc cuprates in the underdoped regime. , 1996, Physical review letters.

[69]  Nakano,et al.  Magnetic properties and electronic conduction of superconducting La2-xSrxCuO4. , 1994, Physical review. B, Condensed matter.

[70]  V. J. Emery,et al.  Frustrated electronic phase separation and high-temperature superconductors , 1993 .

[71]  P. Anderson,et al.  Experimental Constraints on the Theory of High-Tc Superconductivity , 1992, Science.

[72]  Littlewood,et al.  Phenomenology of the normal state of Cu-O high-temperature superconductors. , 1989, Physical review letters.

[73]  Uchida,et al.  Superconductor-to-nonsuperconductor transition in (La1-xSrx)2CuO4 as investigated by transport and magnetic measurements. , 1989, Physical review. B, Condensed matter.

[74]  Gurvitch,et al.  Resistivity of La1.825Sr0.175CuO4 and YBa2Cu3O7 to 1100 K: Absence of saturation and its implications. , 1987, Physical review letters.

[75]  A. Miedema,et al.  Some experiments on magnetically diluted antiferromagnets , 1973 .

[76]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[77]  G. Gu,et al.  Probing the connections between superconductivity , stripe order , and structure in La 1 , 2012 .

[78]  J. Goodenough,et al.  Linear temperature dependence of resistivity and change in the Fermi surface at the pseudogap critical point of a high-Tc superconductor , 2008 .

[79]  D. Mihailovic,et al.  The attainable superconducting Tc in a model of phase coherence by percolating , 2002 .