Testing independence of functional variables by angle covariance

Abstract We propose a new nonparametric independence test for two functional random variables. The test is based on a new dependence metric, the so-called angle covariance, which fully characterizes the independence of the random variables and generalizes the projection covariance proposed for random vectors. The angle covariance has a number of desirable properties, including the equivalence of its zero value and the independence of the two functional variables, and it can be applied to any functional data without finite moment conditions. We construct a V -statistic estimator of the angle covariance, and show that it has a Gaussian chaos limiting distribution under the independence null hypothesis and a normal limiting distribution under the alternative hypothesis. The test based on the estimated angle covariance is consistent against all alternatives and easy to be implemented by the given random permutation method. Simulations show that the test based on the angle covariance outperforms other competing tests for functional data.

[2]  Jeffrey S. Morris Functional Regression , 2014, 1406.4068.

[3]  Michael R Kosorok On Brownian Distance Covariance and High Dimensional Data. , 2009, The annals of applied statistics.

[4]  P. Vieu,et al.  Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .

[5]  P. Janssen,et al.  Theory of U-statistics , 1994 .

[6]  Carey E. Priebe,et al.  From Distance Correlation to Multiscale Graph Correlation , 2017, Journal of the American Statistical Association.

[7]  P. Kokoszka,et al.  Introduction to Functional Data Analysis , 2017 .

[8]  Michael Mitzenmacher,et al.  Detecting Novel Associations in Large Data Sets , 2011, Science.

[9]  N. Vakhania,et al.  Probability Distributions on Banach Spaces , 1987 .

[10]  James O. Ramsay,et al.  Functional Data Analysis , 2005 .

[11]  N. Vakhania The Topological Support of Gaussian Measure in Banach Space , 1975, Nagoya Mathematical Journal.

[12]  Le Song,et al.  A Hilbert Space Embedding for Distributions , 2007, Discovery Science.

[13]  Bernhard Schölkopf,et al.  Measuring Statistical Dependence with Hilbert-Schmidt Norms , 2005, ALT.

[14]  Ursula Faber,et al.  Theory Of U Statistics , 2016 .

[15]  R. F.,et al.  Mathematical Statistics , 1944, Nature.

[16]  Giuseppe Da Prato,et al.  Introduction to Stochastic Analysis and Malliavin Calculus , 2007 .

[17]  T. Hsing,et al.  Theoretical foundations of functional data analysis, with an introduction to linear operators , 2015 .

[18]  Maria L. Rizzo,et al.  Measuring and testing dependence by correlation of distances , 2007, 0803.4101.

[19]  B. Schölkopf,et al.  Kernel‐based tests for joint independence , 2016, 1603.00285.

[20]  Le Song,et al.  A Kernel Statistical Test of Independence , 2007, NIPS.

[21]  K. Siburg,et al.  A measure of mutual complete dependence , 2010 .

[22]  D. Tjøstheim,et al.  Statistical Dependence: Beyond Pearson’s ρ , 2018, Statistical Science.

[23]  P. Hall,et al.  On properties of functional principal components analysis , 2006 .

[24]  Roman Vershynin,et al.  High-Dimensional Probability , 2018 .

[25]  R. Lyons Distance covariance in metric spaces , 2011, 1106.5758.

[26]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[27]  Heping Zhang,et al.  Ball Covariance: A Generic Measure of Dependence in Banach Space , 2019, Journal of the American Statistical Association.

[28]  Hans-Georg Müller Functional Data Analysis. , 2011 .

[29]  B. Schweizer,et al.  On Nonparametric Measures of Dependence for Random Variables , 1981 .

[30]  Runze Li,et al.  Projection correlation between two random vectors , 2017, Biometrika.