First-principles molecular dynamics modeling of the molten fluoride salt with Cr solute

[1]  D. Morgan,et al.  First-principles molecular dynamics modeling of the LiCl–KCl molten salt system , 2014 .

[2]  Chris D. Geddes,et al.  Physical Chemistry Chemical Physics , 2013 .

[3]  C. Chakravarty,et al.  Structure and transport properties of LiF–BeF2 mixtures: Comparison of rigid and polarizable ion potentials# , 2012, Journal of Chemical Sciences.

[4]  Zi-kui Liu,et al.  Effects of reactive elements on the structure and diffusivity of liquid chromia: Anab initiomolecular dynamics study , 2012 .

[5]  R. Bordia,et al.  Transactions of the American Nuclear Society , 2012 .

[6]  S. Malang,et al.  Fusion Engineering and Design , 2012 .

[7]  P. Madden,et al.  Polarization effects in ionic solids and melts , 2011, 1502.07534.

[8]  D. Bowler,et al.  Van der Waals density functionals applied to solids , 2011, 1102.1358.

[9]  Matthew J. Rosseinsky,et al.  Physical Review B , 2011 .

[10]  P. Madden,et al.  Internal mobilities and diffusion in an ionic liquid mixture. , 2010, Physical chemistry chemical physics : PCCP.

[11]  C. Woodward,et al.  Ab initio simulations of molten Ni alloys , 2010 .

[12]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[13]  Finance,et al.  OF THESIS , 2010 .

[14]  Ralph Moir,et al.  Liquid Fluoride Thorium Reactors: An old idea in nuclear power gets reexamined , 2010 .

[15]  José Mario Martínez,et al.  PACKMOL: A package for building initial configurations for molecular dynamics simulations , 2009, J. Comput. Chem..

[16]  A. Sagara,et al.  High Performance Corrosion Resistance of Nickel-Based Alloys in Molten Salt Flibe , 2009 .

[17]  A. Sagara,et al.  Corrosion characteristics of reduced activation ferritic steel, JLF-1 (8.92Cr–2W) in molten salts Flibe and Flinak , 2009 .

[18]  A. Sagara,et al.  Metallurgical study on corrosion of austenitic steels in molten salt LiF―BeF2 (Flibe) , 2009 .

[19]  J. Perdew,et al.  Assessing the performance of recent density functionals for bulk solids , 2009, 0903.4037.

[20]  P Ganesh,et al.  Liquid-liquid transition in supercooled silicon determined by first-principles simulation. , 2008, Physical review letters.

[21]  P. Madden,et al.  Heat-transport properties of molten fluorides: Determination from first-principles , 2009 .

[22]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[23]  Tanmoy Das,et al.  Superconductivity and topological Fermi surface transitions in electron-doped cuprates near optimal doping , 2007, 0711.1504.

[24]  A. Müller Journal of Physics Condensed Matter , 2008 .

[25]  David M. Nicol,et al.  Proceedings of the 38th conference on Winter simulation , 2006 .

[26]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[27]  V. V. Ignat’ev,et al.  Experimental investigation of the physical properties of salt melts containing sodium and lithium fluorides and beryllium difluoride , 2006 .

[28]  L. Stixrude,et al.  A First-Principles Computational Framework for Liquid Mineral Systems , 2006 .

[29]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[30]  P. Madden,et al.  A first-principles description of liquid BeF2 and its mixtures with LiF: 1. Potential development and pure BeF2. , 2006, The journal of physical chemistry. B.

[31]  P. Madden,et al.  A first-principles description of liquid BeF2 and its mixtures with LiF: 2. Network formation in LiF-BeF2. , 2006, The journal of physical chemistry. B.

[32]  Akihiro Suzuki,et al.  Study of tritium migration in liquid Li2BeF4 with ab initio molecular dynamics , 2006 .

[33]  J. Garai,et al.  The temperature dependence of the isothermal bulk modulus at 1 bar pressure , 2006, physics/0601101.

[34]  Takayuki Terai,et al.  JUPITER-II molten salt flibe research : An update on tritium, mobilization and redox chemistry experiments , 2005 .

[35]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[36]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[37]  G. Burr,et al.  Journal of Applied Physics , 2004 .

[38]  P. Peterson,et al.  Molten-Salt-Cooled Advanced High-Temperature Reactor for Production of Hydrogen and Electricity , 2003 .

[39]  Timothy Abram,et al.  A Technology Roadmap for Generation-IV Nuclear Energy Systems, USDOE/GIF-002-00 , 2002 .

[40]  M. Matsumiya,et al.  A molecular dynamics simulation of the electric properties in molten chloride and fluoride quaternary systems , 2001 .

[41]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[42]  A. Sagara,et al.  Compatibility of Structural Materials with Li2BeF4 Molten Salt Breeder , 2001 .

[43]  M. Gillan,et al.  First-principles calculation of transport coefficients , 1998, cond-mat/9805082.

[44]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[45]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[46]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[47]  M.G.B. Drew,et al.  The art of molecular dynamics simulation , 1996 .

[48]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[49]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[50]  W. H. Williams,et al.  HYLIFE-II: A Molten-Salt Inertial Fusion Energy Power Plant Design — Final Report , 1994 .

[51]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[52]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[53]  Paul A. Madden,et al.  Polarization effects in ionic systems from first principles , 1993 .

[54]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[55]  K. Igarashi,et al.  X-ray diffraction study of molten eutectic LiF–NaF–KF mixture , 1988 .

[56]  George J. Janz,et al.  Thermodynamic and transport properties for molten salts : correlation equations for critically evaluated density, surface tension, electrical conductance, and viscosity data , 1988 .

[57]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[58]  A. Stoneham JOURNAL-OF-PHYSICS-C - SOLID-STATE PHYSICS AND SEMICONDUCTOR SCIENCE AND TECHNOLOGY , 1985 .

[59]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[60]  K. Furukawa,et al.  X-ray diffraction analysis of molten potassium bromide , 1983 .

[61]  F. Lantelme,et al.  Ionic dynamics in the LiCl–KCl system at liquid state , 1982 .

[62]  G. Janz,et al.  Molten Salts Data: Diffusion Coefficients in Single and Multi‐Component Salt Systems , 1982 .

[63]  N. Iwamoto,et al.  Self-diffusion of lithium, sodium, potassium and fluorine in a molten LiF + NaF + KF eutectic mixture , 1981 .

[64]  C. Caccamo,et al.  Molten alkali-halide mixtures: a molecular-dynamics study of Li/KCl mixtures , 1980 .

[65]  N. Iwamoto,et al.  Self-diffusion of lithium in molten LiBeF3 and Li2BeF4 , 1979 .

[66]  Kenneth D. Niles,et al.  Electric Vehicle Charging Infrastructure in Croatia – First-Hand Experiences and Recommendations for Future Development , 2023, Journal of Energy - Energija.

[67]  K. Furukawa,et al.  Self-diffusion of fluorine in molten dilithium tetrafluoroberyllate , 1976 .

[68]  K. Singer,et al.  A Monte Carlo calculation of thermodynamic properties for the liquid NaCl+KCl mixture , 1973 .

[69]  A. Narten,et al.  Diffraction pattern and structure of molten BeF2–LiF solutions , 1973 .

[70]  J. R. Engel,et al.  EXPERIENCE WITH THE MOLTEN-SALT REACTOR EXPERIMENT , 1970 .

[71]  Physical Review , 1965, Nature.

[72]  M. P. Tosi,et al.  Ionic sizes and born repulsive parameters in the NaCl-type alkali halides—I: The Huggins-Mayer and Pauling forms , 1964 .

[73]  M. P. Tosi,et al.  Ionic sizes and born repulsive parameters in the NaCl-type alkali halides—II: The generalized Huggins-Mayer form☆ , 1964 .

[74]  B. Hayes The American Scientist , 1962, Nature.

[75]  E. Ungureanu,et al.  Molecular Physics , 2008, Nature.

[76]  Milton D Grele,et al.  Forced-convection heat-transfer characteristics of molten Flinak flowing in an Inconel X system , 1954 .

[77]  F. Birch Finite Elastic Strain of Cubic Crystals , 1947 .

[78]  F. Murnaghan The Compressibility of Media under Extreme Pressures. , 1944, Proceedings of the National Academy of Sciences of the United States of America.

[79]  J. Mayer,et al.  Interatomic Distances in Crystals of the Alkali Halides , 1933 .

[80]  Journal of Chemical Physics , 1932, Nature.

[81]  O. Bagasra,et al.  Proceedings of the National Academy of Sciences , 1914, Science.

[82]  J. W.,et al.  The Journal of Physical Chemistry , 1900, Nature.

[83]  Journal of the Chemical Society , 1875, The British and Foreign Medico-Chirurgical Review.

[84]  THE JOURNAL OF PHYSICAL CHEMISTRY B , 2022 .

[85]  F. Conceição,et al.  PEDOT-AuNPs-based impedimetric immunosensor for the detection of SARS-CoV-2 antibodies , 2021, Electrochimica Acta.

[86]  October I Physical Review Letters , 2022 .

[87]  Eric F Darve,et al.  Author ' s personal copy A hybrid method for the parallel computation of Green ’ s functions , 2009 .