Minimisation in Logical Form

Stone-type dualities provide a powerful mathematical framework for studying properties of logical systems. They have recently been fruitfully explored in understanding minimisation of various types of automata. In Bezhanishvili et al. (2012), a dual equivalence between a category of coalgebras and a category of algebras was used to explain minimisation. The algebraic semantics is dual to a coalgebraic semantics in which logical equivalence coincides with trace equivalence. It follows that maximal quotients of coalgebras correspond to minimal subobjects of algebras. Examples include partially observable deterministic finite automata, linear weighted automata viewed as coalgebras over finite-dimensional vector spaces, and belief automata, which are coalgebras on compact Hausdorff spaces. In Bonchi et al. (2014), Brzozowski's double-reversal minimisation algorithm for deterministic finite automata was described categorically and its correctness explained via the duality between reachability and observability. This work includes generalisations of Brzozowski's algorithm to Moore and weighted automata over commutative semirings. In this paper we propose a general categorical framework within which such minimisation algorithms can be understood. The goal is to provide a unifying perspective based on duality. Our framework consists of a stack of three interconnected adjunctions: a base dual adjunction that can be lifted to a dual adjunction between coalgebras and algebras and also to a dual adjunction between automata. The approach provides an abstract understanding of reachability and observability. We illustrate the general framework on range of concrete examples, including deterministic Kripke frames, weighted automata, topological automata (belief automata), and alternating automata.

[1]  Mai Gehrke Stone Duality and the Recognisable Languages over an Algebra , 2009, CALCO.

[2]  Jurriaan Rot,et al.  Coalgebraic Minimization of Automata by Initiality and Finality , 2016, MFPS.

[3]  Sabine Koppelberg,et al.  Handbook of Boolean Algebras , 1989 .

[4]  M. Arbib,et al.  Machines in a category , 1980 .

[5]  Pierre Ganty,et al.  A Congruence-based Perspective on Automata Minimization Algorithms , 2019, MFCS.

[6]  J. R. Buzeman Introduction To Boolean Algebras , 1961 .

[7]  Dexter Kozen,et al.  On parallelism in turing machines , 1976, 17th Annual Symposium on Foundations of Computer Science (sfcs 1976).

[8]  Alexandra Silva,et al.  A coalgebraic perspective on linear weighted automata , 2011, Inf. Comput..

[9]  M. Stone The theory of representations for Boolean algebras , 1936 .

[10]  Alexandra Silva,et al.  Generalizing the powerset construction, coalgebraically , 2010, FSTTCS.

[11]  Marcel Paul Schützenberger,et al.  On the Definition of a Family of Automata , 1961, Inf. Control..

[12]  Jurriaan Rot,et al.  Duality of Equations and Coequations via Contravariant Adjunctions , 2016, CMCS.

[13]  Alexandra Silva,et al.  A Coalgebraic Perspective on Minimization and Determinization , 2012, FoSSaCS.

[14]  Marcello M. Bonsangue,et al.  Presenting Functors by Operations and Equations , 2006, FoSSaCS.

[15]  Michael A. Arbib,et al.  Extensions of Semilattices , 1975 .

[16]  Jan J. M. M. Rutten,et al.  The dual equivalence of equations and coequations for automata , 2014, Inf. Comput..

[17]  M. Stone Topological representations of distributive lattices and Brouwerian logics , 1938 .

[18]  Michael A. Arbib,et al.  Foundations of System Theory: The Hankel Matrix , 1980, J. Comput. Syst. Sci..

[19]  Ernst L. Leiss,et al.  Succint Representation of Regular Languages by Boolean Automata , 1981, Theor. Comput. Sci..

[20]  Serge Grigorieff,et al.  Duality and Equational Theory of Regular Languages , 2008, ICALP.

[21]  M. Arbib,et al.  Adjoint machines, state-behavior machines, and duality☆ , 1975 .

[22]  Prakash Panangaden,et al.  Minimization via Duality , 2012, WoLLIC.

[23]  Barbara König,et al.  Lifting Adjunctions to Coalgebras to (Re)Discover Automata Constructions , 2014, CMCS.

[24]  Ernst L. Leiss,et al.  On Equations for Regular Languages, Finite Automata, and Sequential Networks , 1980, Theor. Comput. Sci..

[25]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[26]  Alexander Kurz,et al.  On the Duality between Observability and Reachability , 2001, FoSSaCS.

[27]  Yi-jia Tan,et al.  Free sets and free subsemimodules in a semimodule , 2016 .

[28]  M. A. ARBIB,et al.  On the relevance of abstract algebra to control theory , 1969, Autom..

[29]  Alexandra Silva,et al.  Algebra-coalgebra duality in brzozowski's minimization algorithm , 2014, ACM Trans. Comput. Log..

[30]  Stefan Milius,et al.  Varieties of Languages in a Category , 2015, 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science.

[31]  Samson Abramsky,et al.  Domain Theory in Logical Form , 1991, LICS.

[32]  J. Brzozowski Canonical regular expressions and minimal state graphs for definite events , 1962 .

[33]  B. Blackadar,et al.  Operator Algebras: Theory of C*-Algebras and von Neumann Algebras , 2005 .

[34]  S. Lack,et al.  The formal theory of monads II , 2002 .

[35]  R. Kálmán On the general theory of control systems , 1959 .

[36]  Marcello M. Bonsangue,et al.  Regular Varieties of Automata and Coequations , 2015, MPC.

[37]  P. Halmos Lectures on Boolean Algebras , 1963 .

[38]  Thomas Colcombet,et al.  Automata Minimization: a Functorial Approach , 2017, CALCO.

[39]  Bartek Klin,et al.  Coalgebraic Modal Logic Beyond Sets , 2007, MFPS.

[40]  F. Bartels,et al.  On Generalised Coinduction and Probabilistic Specification Formats , 2004 .

[41]  Bart Jacobs,et al.  Structural Induction and Coinduction in a Fibrational Setting , 1998, Inf. Comput..

[42]  Jurriaan Rot,et al.  Coalgebraic Trace Semantics via Forgetful Logics , 2015, FoSSaCS.

[43]  M. Arbib,et al.  MACHINES IN A CATEGORY: AN EXPOSITORY INTRODUCTION* , 1974 .

[44]  M. Arbib,et al.  Fuzzy machines in a category , 1975, Bulletin of the Australian Mathematical Society.

[45]  W. Arveson An Invitation To C*-Algebras , 1976 .

[46]  Steven Givant,et al.  Introduction to Boolean Algebras , 2008 .

[47]  S. Sakai C*-Algebras and W*-Algebras , 1971 .

[48]  Bart Jacobs,et al.  A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages , 2006, Essays Dedicated to Joseph A. Goguen.

[49]  Majid Alizadeh,et al.  Boolean Algebras , 2022, Set Theory and Foundations of Mathematics: An Introduction to Mathematical Logic.

[50]  Steven Givant,et al.  Introduction to Boolean algebras. Undergraduate Texts in Mathematics , 2010 .

[51]  Ana Sokolova,et al.  Exemplaric Expressivity of Modal Logics , 2010, J. Log. Comput..

[52]  Paul Taylor SUBSPACES IN ABSTRACT STONE DUALITY , 2002 .

[53]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[54]  Marcello M. Bonsangue,et al.  Duality for Logics of Transition Systems , 2005, FoSSaCS.

[55]  E. Manes,et al.  A triple theoretic construction of compact algebras , 1969 .

[56]  Julian Salamanca,et al.  Unveiling Eilenberg-type Correspondences: Birkhoff's Theorem for (finite) Algebras + Duality , 2017, ArXiv.

[57]  Jirí Adámek,et al.  Generalized Eilenberg Theorem: Varieties of Languages in a Category , 2018, TOCL.

[58]  E. V. Huntington Sets of independent postulates for the algebra of logic , 1904 .

[59]  Joan W Negrepontis Duality in analysis from the point of view of triples , 1971 .

[60]  境 正一郎 C[*]-algebras and W[*]-algebras , 1973 .

[61]  P. T. Johnstone,et al.  Adjoint Lifting Theorems for Categories of Algebras , 1975 .

[62]  Dominic R. Verity,et al.  ∞-Categories for the Working Mathematician , 2018 .

[63]  Jirí Adámek,et al.  Abstract and Concrete Categories - The Joy of Cats , 1990 .

[64]  Derick Wood,et al.  Theory of computation , 1986 .