Generalized Model-Checking over Locally Tree-Decomposable Classes

It has been proved in [12] that properties of graphs or other relational structures that are definable in first-order logic can be decided in linear time when the input structures are restricted to come from a locally tree-decomposable class of structures. Examples of such classes are the class of planar graphs or classes of graphs of bounded degree.In this paper, we consider more general computational problems than decision problems. We prove that construction, listing, and counting problems definable in first-order logic can be solved in linear time on locally tree-decomposable classes of structures.

[1]  Jörg Flum,et al.  Query evaluation via tree-decompositions , 2001, JACM.

[2]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[3]  Moshe Y. Vardi The complexity of relational query languages (Extended Abstract) , 1982, STOC '82.

[4]  H. Gaifman On Local and Non-Local Properties , 1982 .

[5]  Rolf Niedermeier,et al.  Fixed Parameter Algorithms for DOMINATING SET and Related Problems on Planar Graphs , 2002, Algorithmica.

[6]  Markus Frick,et al.  Easy instances for model checking , 2001 .

[7]  Hans L. Bodlaender,et al.  Treewidth: Algorithmic Techniques and Results , 1997, MFCS.

[8]  Leslie G. Valiant,et al.  The Complexity of Combinatorial Computations: An Introduction , 1978, GI Jahrestagung.

[9]  Martin Grohe Generalized Model-Checking Problems for First-Order Logic , 2001, STACS.

[10]  Brenda S. Baker Approximation Algorithms for NP-Complete Problems on Planar Graphs (Preliminary Version) , 1983, FOCS.

[11]  Ronald Fagin,et al.  On Monadic NP vs. Monadic co-NP , 1995, Inf. Comput..

[12]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[13]  David Eppstein Diameter and Treewidth in Minor-Closed Graph Families , 2000, Algorithmica.

[14]  Detlef Seese,et al.  Easy Problems for Tree-Decomposable Graphs , 1991, J. Algorithms.

[15]  Hans L. Bodlaender,et al.  A Tourist Guide through Treewidth , 1993, Acta Cybern..

[16]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[17]  Bruno Courcelle,et al.  Graph Rewriting: An Algebraic and Logic Approach , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[18]  Martin Grohe,et al.  Deciding First-Order Properties of Locally Tree-Decomposalbe Graphs , 1999, ICALP.

[19]  Arie M. C. A. Koster,et al.  Treewidth: Computational Experiments , 2001, Electron. Notes Discret. Math..

[20]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[21]  Leslie G. Valiant,et al.  Random Generation of Combinatorial Structures from a Uniform Distribution , 1986, Theor. Comput. Sci..

[22]  Jörg Flum,et al.  Finite model theory , 1995, Perspectives in Mathematical Logic.

[23]  Detlef Seese,et al.  Linear time computable problems and first-order descriptions , 1996, Mathematical Structures in Computer Science.

[24]  Martin Grohe,et al.  Deciding first-order properties of locally tree-decomposable structures , 2000, JACM.

[25]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .