Optimal estimation retrievals of the atmospheric structure and composition of HD 189733b from secondary eclipse spectroscopy

Recent spectroscopic observations of transiting hot Jupit ers have permitted the derivation of the thermal structure and molecular abundances of H2O, CO2, CO, and CH4 in these extreme atmospheres. Here, for the first time, we apply the tech nique of optimal estimation to determine the thermal structure and composition of an exoplanet by solving the inverse problem. The development of a suite of radiative transfer and retrieval tools for exoplanet atmospheres is described, building upon a retrieval algori thm which is extensively used in the study of our own solar system. First, we discuss the plausibility of detection of different molecules in the dayside atmosphere of HD 189733b and the best-fitting spectrum retrieved from all publicly available sets of secondary eclipse obser vations between 1.45 and 24 µm. Additionally, we use contribution functions to assess the vertical sensitivity of the emission spectrum to temperatures and molecular composition. Over the altitudes probed by the contribution functions, the retrieved thermal structure show s an isothermal upper atmosphere overlying a deeper adiabatic layer (temperature decreasing with altitude), which is consistent with previously-reported dynamical and observational results. The formal uncertainties on retrieved parameters are estimated conservatively using an analysis of the cross-correlation functions and the degeneracy between different atmospheric properties. The formal solution of the inverse problem suggests that the uncertainties on retr ieved parameters are larger than suggested in previous studies, and that the presence of CO and CH4 is only marginally supported by the available data. Nevertheless, by including as broad a wavelength range as possible in the retrieval, we demonstrate that available spectra of HD 189733b can constrain a family of potential solutions for the atmospheric structure.

[1]  K. Heng,et al.  On the effects of clouds and hazes in the atmospheres of hot Jupiters: semi‐analytical temperature–pressure profiles , 2011, 1107.1390.

[2]  N. Gibson,et al.  Hubble Space Telescope transmission spectroscopy of the exoplanet HD 189733b: high‐altitude atmospheric haze in the optical and near‐ultraviolet with STIS , 2011, 1103.0026.

[3]  W. C. Bowman,et al.  A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b , 2010, Nature.

[4]  S. Seager,et al.  HIGH METALLICITY AND NON-EQUILIBRIUM CHEMISTRY IN THE DAYSIDE ATMOSPHERE OF HOT-NEPTUNE GJ 436b , 2010, 1004.5121.

[5]  S. Seager,et al.  ON THE INFERENCE OF THERMAL INVERSIONS IN HOT JUPITER ATMOSPHERES , 2010, 1010.4585.

[6]  Thomas P. Greene,et al.  TRANSMISSION SPECTRA OF TRANSITING PLANET ATMOSPHERES: MODEL VALIDATION AND SIMULATIONS OF THE HOT NEPTUNE GJ 436b FOR THE JAMES WEBB SPACE TELESCOPE , 2010, 1010.2451.

[7]  University of Exeter,et al.  A new look at NICMOS transmission spectroscopy of HD 189733, GJ-436 and XO-1: no conclusive evidence for molecular features , 2010, 1010.1753.

[8]  Jonathan Tennyson,et al.  HITEMP, the high-temperature molecular spectroscopic database , 2010 .

[9]  Mark R. Swain,et al.  Selective principal component extraction and reconstruction: a novel method for ground based exoplanet spectroscopy , 2010, 1009.2473.

[10]  D. Charbonneau,et al.  THE CLIMATE OF HD 189733b FROM FOURTEEN TRANSITS AND ECLIPSES MEASURED BY SPITZER , 2010, 1007.4378.

[11]  S. Seager,et al.  Exoplanet Atmospheres , 2010, 1005.4037.

[12]  M. Line,et al.  HIGH-TEMPERATURE PHOTOCHEMISTRY IN THE ATMOSPHERE OF HD 189733b , 2010, 1004.4029.

[13]  Drake Deming,et al.  Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b , 2010, Nature.

[14]  T. Henning,et al.  A ground-based near-infrared emission spectrum of the exoplanet HD 189733b , 2010, Nature.

[15]  A. P. Showman,et al.  TRANSMISSION SPECTRA OF THREE-DIMENSIONAL HOT JUPITER MODEL ATMOSPHERES , 2009, 0912.2350.

[16]  S. Seager,et al.  A TEMPERATURE AND ABUNDANCE RETRIEVAL METHOD FOR EXOPLANET ATMOSPHERES , 2009, 0910.1347.

[17]  G. Hebrard,et al.  Transit spectrophotometry of the exoplanet HD189733b. I. Searching for water but finding haze with HST NICMOS , 2009, 0907.4991.

[18]  D. Ehrenreich,et al.  SEARCH FOR CARBON MONOXIDE IN THE ATMOSPHERE OF THE TRANSITING EXOPLANET HD 189733b , 2009, 0903.3405.

[19]  David Charbonneau,et al.  ATMOSPHERIC CIRCULATION OF HOT JUPITERS: COUPLED RADIATIVE-DYNAMICAL GENERAL CIRCULATION MODEL SIMULATIONS OF HD 189733b and HD 209458b , 2008, 0809.2089.

[20]  Carl J. Grillmair,et al.  Strong water absorption in the dayside emission spectrum of the planet HD 189733b , 2008, Nature.

[21]  Pin Chen,et al.  Submitted to the Astrophysical Journal Letters Molecular Signatures in the Near Infrared Dayside Spectrum of , 2022 .

[22]  S. Calcutt,et al.  The NEMESIS planetary atmosphere radiative transfer and retrieval tool , 2008 .

[23]  Gautam Vasisht,et al.  The presence of methane in the atmosphere of an extrasolar planet , 2008, Nature.

[24]  D. Ehrenreich,et al.  Determining Atmospheric Conditions at the Terminator of the Hot Jupiter HD 209458b , 2008, 0803.1054.

[25]  Michel Mayor,et al.  The Broadband Infrared Emission Spectrum of the Exoplanet HD 189733b , 2008, 0802.0845.

[26]  M. Marley,et al.  Atmospheric Circulation of Hot Jupiters: Three-dimensional Circulation Models of HD 209458b and HD 189733b with Simplified Forcing , 2008, 0802.0327.

[27]  I. Hubeny,et al.  Theoretical Spectra and Light Curves of Close-in Extrasolar Giant Planets and Comparison with Data , 2007, 0709.4080.

[28]  C. Moutou,et al.  Detection of atmospheric haze on an extrasolar planet: the 0.55–1.05 μm transmission spectrum of HD 189733b with the Hubble Space Telescope , 2007, 0712.1374.

[29]  L. Koesterke,et al.  Sodium Absorption from the Exoplanetary Atmosphere of HD 189733b Detected in the Optical Transmission Spectrum , 2007, 0712.0761.

[30]  I. Ribas,et al.  Primary Transit of the Planet HD 189733b at 3.6 and 5.8 μm , 2007, 0711.2142.

[31]  Jonathan Tennyson,et al.  Water vapour in the atmosphere of a transiting extrasolar planet , 2007, Nature.

[32]  Mark S. Marley,et al.  Analysis of Spitzer Spectra of Irradiated Planets: Evidence for Water Vapor? , 2007, 0705.2457.

[33]  David Charbonneau,et al.  A map of the day–night contrast of the extrasolar planet HD 189733b , 2007, Nature.

[34]  D. Ehrenreich,et al.  Infrared Transmission Spectra for Extrasolar Giant Planets , 2006, astro-ph/0611174.

[35]  Drake Deming,et al.  Accepted for publication in the Astrophysical Journal Strong Infrared Emission from the Extrasolar Planet HD189733b , 2006 .

[36]  D. Saumon,et al.  Atmosphere, Interior, and Evolution of the Metal-rich Transiting Planet HD 149026b , 2005, astro-ph/0507422.

[37]  Paul S. Smith,et al.  The Multiband Imaging Photometer for Spitzer (MIPS) , 2004 .

[38]  Gary J. Melnick,et al.  In-flight performance and calibration of the Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[39]  S. Tashkun,et al.  CDSD-1000, the high-temperature carbon dioxide spectroscopic databank , 2003 .

[40]  A. Borysow,et al.  Collision-induced absorption coefficients of H2 pairs at temperatures from 60 K to 1000 K , 2002 .

[41]  T. Guillot,et al.  Atmospheric circulation and tides of ``51 Pegasus b-like'' planets , 2002, astro-ph/0202236.

[42]  T. Brown Transmission Spectra as Diagnostics of Extrasolar Giant Planet Atmospheres , 2001, astro-ph/0101307.

[43]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[44]  A. Burrows,et al.  Chemical Equilibrium Abundances in Brown Dwarf and Extrasolar Giant Planet Atmospheres , 1998, astro-ph/9807055.

[45]  J. Champion,et al.  Spherical top data system (STDS) software for the simulation of spherical top spectra , 1998 .

[46]  Laurence S. Rothman,et al.  HITRAN HAWKS and HITEMP: high-temperature molecular database , 1995, Defense, Security, and Sensing.

[47]  A. Borysow,et al.  Rototranslational Collision-induced Absorption by H 2--H 2 Pairs at Temperatures from 600 to 7000 K , 1995 .

[48]  W. B. Miller,et al.  Atmospheric propagation and remote sensing 3 , 1994 .

[49]  A. Lacis,et al.  A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres , 1991 .

[50]  Lothar Frommhold,et al.  A new computation of the infrared absorption by H2 pairs in the fundamental band at temperatures from 600 to 5000 K , 1990 .

[51]  Y. Yung,et al.  Atmospheric Radiation: Theoretical Basis , 1989 .

[52]  Lothar Frommhold,et al.  Collision-induced infrared spectra of H2-He pairs at temperatures from 18 to 7000 K. II - Overtone and hot bands , 1989 .

[53]  Lothar Frommhold,et al.  Collision-induced infrared spectra of H2-He pairs involving 0-1 vibrational transitions and temperatures from 18 to 7000 K , 1989 .

[54]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[55]  V. Oinas,et al.  Atmospheric Radiation , 1963, Nature.

[56]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .