Optimal Power Generation under Uncertainty via Stochastic Programming

A power generation system comprising thermal and pumpedstorage hydro plants is considered. Two kinds of models for the cost-optimal generation of electric power under uncertain load are introduced: (i) a dynamic model for the short-term operation and (ii) a power production planning model. In both cases the presence of stochastic data in the optimization model leads to multi-stage and two-stage stochastic programs respectively. Both stochastic programming problems involve a large number of mixed-integer (stochastic) decisions but their constraints are loosely coupled across operating power units. This is used to design Lagrangian relaxation methods for both models which lead to a decomposition into stochastic single unit subproblems. For the dynamic model a Lagrangian decomposition based algorithm is described in more detail. Special emphasis is put on a discussion of the duality gap the efficient solution of the multi-stage single unit subproblems and on solving the dual problem by bundle methods for convex nondifferentiable optimization.

[1]  K. Kiwiel,et al.  Solving Unit Commitment Problems in Power Production Planning , 1997 .

[2]  G. B. Dantzig,et al.  Approaches to Stochastic Programming with Application to Electric Power Systems , 1993 .

[3]  John M. Mulvey,et al.  A New Scenario Decomposition Method for Large-Scale Stochastic Optimization , 1995, Oper. Res..

[4]  Jery R. Stedinger,et al.  SOCRATES: A system for scheduling hydroelectric generation under uncertainty , 1995, Ann. Oper. Res..

[5]  P. Carpentier,et al.  Stochastic optimization of unit commitment: a new decomposition framework , 1996 .

[6]  M. Dempster On stochastic programming. II: Dynamic problems under risk , 1988 .

[7]  R. Bacher,et al.  Optimization in planning and operation of electric power systems : lecture notes of the SVOR/ASRO tutuorial, Thun, Switzerland, October 14-16, 1992 , 1993 .

[8]  Karl Frauendorfer,et al.  Barycentric scenario trees in convex multistage stochastic programming , 1996, Math. Program..

[9]  Matthias Peter Nowak,et al.  A Fast Descent Method for the Hydro Storage Subproblem in Power Generation , 1996 .

[10]  Werner Römisch,et al.  Optimal Power Dispatch via Multistage Stochastic Programming , 1997 .

[11]  Francisco D. Galiana,et al.  Towards a more rigorous and practical unit commitment by Lagrangian relaxation , 1988 .

[12]  Jong-Shi Pang,et al.  Nonsmooth Equations: Motivation and Algorithms , 1993, SIAM J. Optim..

[13]  Krzysztof C. Kiwiel,et al.  An aggregate subgradient method for nonsmooth convex minimization , 1983, Math. Program..

[14]  Yuri Ermoliev,et al.  Numerical techniques for stochastic optimization , 1988 .

[15]  R. Wets,et al.  L-SHAPED LINEAR PROGRAMS WITH APPLICATIONS TO OPTIMAL CONTROL AND STOCHASTIC PROGRAMMING. , 1969 .

[16]  G. Sheblé,et al.  Power generation operation and control — 2nd edition , 1996 .

[17]  Rüdiger Schultz,et al.  Dual decomposition in stochastic integer programming , 1999, Oper. Res. Lett..

[18]  B. Kummer Newton’s Method Based on Generalized Derivatives for Nonsmooth Functions: Convergence Analysis , 1992 .

[19]  Allen J. Wood,et al.  Power Generation, Operation, and Control , 1984 .

[20]  R. Rockafellar,et al.  Nonanticipativity and L1-martingales in stochastic optimization problems , 1976 .

[21]  John R. Birge,et al.  Intelligent unified control of unit commitment and generation allocation , 1994 .

[22]  Andrzej Ruszczynski,et al.  On augmented Lagrangian decomposition methods for multistage stochastic programs , 1996, Ann. Oper. Res..

[23]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[24]  Horand I. Gassmann,et al.  Mslip: A computer code for the multistage stochastic linear programming problem , 1990, Math. Program..

[25]  John R. Birge,et al.  Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs , 1985, Oper. Res..

[26]  Defeng Sun,et al.  Properties of the Moreau-Yosida regularization of a piecewise C2 convex function , 1999, Math. Program..

[27]  Jitka Dupacová,et al.  Multistage stochastic programs: The state-of-the-art and selected bibliography , 1995, Kybernetika.

[28]  G. Infanger,et al.  Planning under uncertainty solving large-scale stochastic linear programs , 1992 .

[29]  Julia L. Higle,et al.  Stochastic Decomposition: A Statistical Method for Large Scale Stochastic Linear Programming , 1996 .

[30]  J. E. Kelley,et al.  The Cutting-Plane Method for Solving Convex Programs , 1960 .

[31]  Michael A. H. Dempster,et al.  Evpi-Based Importance Sampling Solution Procedures for Multistage Stochastic Linear Programmes on Parallel Mimd Architectures , 1997 .

[32]  K. Kiwiel Methods of Descent for Nondifferentiable Optimization , 1985 .

[33]  D. Bertsekas,et al.  Optimal short-term scheduling of large-scale power systems , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[34]  Peter Kall,et al.  Stochastic Programming , 1995 .

[35]  Andrzej Ruszczynski,et al.  A regularized decomposition method for minimizing a sum of polyhedral functions , 1986, Math. Program..

[36]  Werner Römisch,et al.  Solving the Unit Commitment Problem in Power Generation by Primal and Dual Methods , 1997 .

[37]  R. Rockafellar,et al.  The Optimal Recourse Problem in Discrete Time: $L^1 $-Multipliers for Inequality Constraints , 1978 .

[38]  M. V. F. Pereira,et al.  Multi-stage stochastic optimization applied to energy planning , 1991, Math. Program..

[39]  P. Varaiya,et al.  Pricing of electric power under uncertainty: information and efficiency , 1995 .

[40]  Krzysztof C. Kiwiel,et al.  Proximity control in bundle methods for convex nondifferentiable minimization , 1990, Math. Program..

[41]  R. Tyrrell Rockafellar,et al.  Scenarios and Policy Aggregation in Optimization Under Uncertainty , 1991, Math. Oper. Res..

[42]  Werner Römisch,et al.  Decomposition of a multi-stage stochastic program for power dispatch , 1996 .

[43]  Harvey J. Everett Generalized Lagrange Multiplier Method for Solving Problems of Optimum Allocation of Resources , 1963 .

[44]  R. Schultz Discontinuous optimization problems in stochastic integer programming , 1996 .

[45]  K. Nara,et al.  Optimal Long-Term Unit Commitment in Large Scale Systems Including Fuel Constrained Thermal and Pumped-Storage Hydro , 1989, IEEE Power Engineering Review.

[46]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988, Wiley interscience series in discrete mathematics and optimization.

[47]  Andrzej Ruszczynski,et al.  On Optimal Allocation of Indivisibles Under Uncertainty , 1998, Oper. Res..

[48]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[49]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[50]  Jochem Zowe,et al.  A Version of the Bundle Idea for Minimizing a Nonsmooth Function: Conceptual Idea, Convergence Analysis, Numerical Results , 1992, SIAM J. Optim..

[51]  Yuri Ermoliev,et al.  Stochastic programming, an introduction. Numerical techniques for stochastic optimization , 1988 .

[52]  Robert Mifflin,et al.  A quasi-second-order proximal bundle algorithm , 1996, Math. Program..

[53]  C. Lemaréchal,et al.  A Condensed Introduction to Bundle Methods in Nonsmooth Optimization , 1994 .

[54]  Derek W. Bunn,et al.  Development of a stochastic model for the economic dispatch of electric power , 1986 .

[55]  Werner Römisch,et al.  A Stochastic Programming Model for Optimal Power Dispatch: Stability and Numerical Treatment , 1992 .

[56]  John R. Birge,et al.  A stochastic model for the unit commitment problem , 1996 .

[57]  Werner Römisch,et al.  A simple recourse model for power dispatch under uncertain demand , 1995, Ann. Oper. Res..

[58]  Claude Lemaréchal,et al.  An approach to variable metric bundle methods , 1993, System Modelling and Optimization.

[59]  John R. Birge,et al.  Parallel decomposition of large-scale stochastic nonlinear programs , 1996, Ann. Oper. Res..

[60]  J. Frédéric Bonnans,et al.  A family of variable metric proximal methods , 1995, Math. Program..

[61]  Karl Frauendorfer,et al.  Stochastic Two-Stage Programming , 1992 .