Thermal microactuators for surface-micromachining processes

Microelectromechanical systems must include large-deflection actuators to create devices which can interact mechanically with their surroundings. Electrostatic actuators with large nonresonant motion require high voltages and large surface areas to produce useful forces. Large-deflection thermal actuators have been fabricated in electroplated metal processes, but the choice of materials is limited, and the high conductivity of metal means these devices need a high current to generate the required heat. Thus, there is a need for a low voltage actuator with a large nonresonant deflection which can be fabricated in integrated circuit compatible surface-micromachining processes. The device described in this paper has a simple, flexible, and reliable design which overcomes the limitations of other actuators. It is a low voltage, medium current thermal actuator which can be designed to move laterally in a controllable, nonresonant motion. Typical actuators are 200 micrometers long, 18 micrometers wide, and deflect 10 micrometers at the tip with a drive current of 5 mA at 5 volts. A wide range of layout geometries allows this type of actuator to be fabricated in any surface-micromachining process that includes a releasable, current-carrying layer. An empirical model is presented to describe the devices fabricate in a commercially available surface-micromachining process. Arrays of actuators were fabricated to test the effect of different device dimensions on maximum achievable deflection as a funciton of applied current. Actuators can be combined to produce more force and have been integrated with other micromechanical structures. Applications of these actuators include linear and rotating motors, compliant micromechanisms, latches, micro-relays, variable capacitators and tweezers.

[1]  Karl K. Stevens,et al.  Statics and Strength of Materials , 1987 .

[2]  T. Christenson,et al.  Thermo-magnetic metal flexure actuators , 1992, Technical Digest IEEE Solid-State Sensor and Actuator Workshop.

[3]  M.E. Zaghloul,et al.  High-level CAD melds micromachined devices with foundries , 1992, IEEE Circuits and Devices Magazine.