Tracking control of mechanical systems in the presence of nonlinear dynamic friction effects

We design an observer-based, exact model knowledge position tracking controller for a second-order mechanical system with nonlinear load dynamics and the nonlinear, dynamic friction model proposed in Canudas de Wit et al. (1995). Since the controller requires an estimate of the immeasurable friction state, we demonstrate how the friction dynamics can be exploited to design three different observers which foster different transient response characteristics for the composite closed-loop system. We then present two adaptive controllers which utilize nonlinear observer/filter structures to provide for asymptotic position tracking while compensating for selected parametric uncertainty.

[1]  A. Ruina,et al.  Stability of Steady Frictional Slipping , 1983 .

[2]  Bernard Friedland,et al.  On the Modeling and Simulation of Friction , 1990, 1990 American Control Conference.

[3]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[4]  B. Friedland,et al.  On adaptive friction compensation without velocity measurement , 1992, [Proceedings 1992] The First IEEE Conference on Control Applications.

[5]  Carlos Canudas de Wit,et al.  Adaptive Friction Compensation in Robot Manipulators: Low Velocities , 1991, Int. J. Robotics Res..

[6]  C. G. Baril,et al.  Performance related adaptive friction compensation for uncertain systems , 1991, 17th Convention of Electrical and Electronics Engineers in Israel.

[7]  Carlos Canudas de Wit,et al.  Adaptive friction compensation with partially known dynamic friction model , 1997 .

[8]  A. Tustin,et al.  The effects of backlash and of speed-dependent friction on the stability of closed-cycle control systems , 1947 .

[9]  E. Rabinowicz The Intrinsic Variables affecting the Stick-Slip Process , 1958 .

[10]  Carlos Canudas de Wit,et al.  A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..

[11]  Bernard Friedland,et al.  On adaptive friction compensation , 1992 .

[12]  Eric P. Dunlap,et al.  Friction Modeling and Control in Boundary Lubrication , 1993, 1993 American Control Conference.

[13]  S. Sastry,et al.  Adaptive Control: Stability, Convergence and Robustness , 1989 .

[14]  B. Armstrong-Hélouvry Stick slip and control in low-speed motion , 1993, IEEE Trans. Autom. Control..

[15]  Carlos Canudas-de-Wit,et al.  Adaptive Friction Compensation with Dynamic Friction Model , 1996 .

[16]  A. Soom,et al.  Friction at a Lubricated Line Contact Operating at Oscillating Sliding Velocities , 1990 .

[17]  Brian Armstrong-Hélouvry,et al.  Stick-slip arising from Stribeck friction , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[18]  Kishan Kumar Kumbla,et al.  Fuzzy control of robotic manipulator , 1993 .

[19]  Ser Yong Lim,et al.  Re-examining the Nicosia-Tomei robot observer-controller from a backstepping perspective , 1996, IEEE Trans. Control. Syst. Technol..

[20]  Carlos Canudas de Wit,et al.  Adaptive friction compensation in DC motor drives , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.