Change Detection In Synthetic Aperture Radar Images Based On Image Fusion And Fuzzy Clustering

Change detection is the process of finding out difference between two images taken at two different times. With the help of remote sensing the . Here we will try to find out the difference of the same image taken at different times. here we use mean ratio and log ratio to find out the difference in the images. Log is use to find background image and fore ground detected by mean ratio. A reformulated fuzzy local-information C-means clustering algorithm is proposed for classifying changed and unchanged regions in the fused difference image. It incorporates the information about spatial context in a novel fuzzy way for the purpose of enhancing the changed information and of reducing the effect of speckle noise. Experiments on real SAR images show that the image fusion strategy integrates the advantages of the log-ratio operator and the mean-ratio operator and gains a better performance. The change detection results obtained by the improved fuzzy clustering algorithm exhibited lower error than its preexistences.