SAFT-γ force field for the simulation of molecular fluids. 1. A single-site coarse grained model of carbon dioxide.

An application of the "top-down" concept for the development of accurate coarse-grained intermolecular potentials of complex fluids is presented. With the more common "bottom-up" procedure, coarse-grained models are constructed from a suitable simplification of a detailed atomistic representation, and small adjustments to the intermolecular parameters are made by comparison with limited experimental data where necessary. In contrast, in the top-down approach, a molecular-based equation of state is used to obtain an effective coarse-grained intermolecular potential that reproduces the macroscopic experimental thermophysical properties over a wide range of conditions. These coarse-grained intermolecular potentials can then be used in conventional molecular simulation to obtain properties (such as structure or dynamics) that are not directly accessible from the equation of state or at extreme conditions where the theory is expected to fail. To demonstrate our procedure, a coarse-grained model for carbon dioxide (CO(2)) is obtained from a recent implementation of the statistical associating fluid theory of variable range (SAFT-VR) employing a Mie (generalized Lennard-Jones) potential; the parameters of this single-site Mie model of CO(2) are estimated by optimizing the equation of state's description of the experimental vapor-pressure and saturated liquid density data. This approach is only viable because of the excellent agreement of the SAFT-VR Mie EoS with simulation data. Our single-site SAFT-γ coarse-grained model for CO(2) is used in Monte Carlo molecular simulation to assess the adequacy of the description of the fluid-phase behavior and properties that were not used to develop the potential model such as the enthalpy of vaporization, interfacial tension, density profiles, supercritical densities, and second-derivative thermodynamic properties (thermal expansivity, isothermal compressibility, heat capacity, Joule-Thompson coefficient, and speed of sound). The accuracy of the description with the single-site SAFT-γ model of CO(2) is found to be of similar quality to that of more sophisticated intermolecular potentials such as a six-site (three LJ centers and three charged sites) all-atom model. The SAFT-γ top-down approach to coarse-graining resolves a key challenge with coarse-graining techniques: the provision of a direct robust link between the microscopic and macroscopic scales.

[1]  E. Vogel,et al.  A new intermolecular potential energy surface for carbon dioxide from ab initio calculations , 2000 .

[2]  P. Cummings,et al.  Molecular Simulation of a Dichain Surfactant/Water/Carbon Dioxide System. 2. Self-Assembly and Aggregation Dynamics , 2001 .

[3]  Janet E. Jones On the determination of molecular fields. —II. From the equation of state of a gas , 1924 .

[4]  Sugata P. Tan,et al.  Recent Advances and Applications of Statistical Associating Fluid Theory , 2008 .

[5]  Cláudio Dariva,et al.  A kinetic approach for predicting diffusivities in dense fluid mixtures , 1999 .

[6]  J. Barker,et al.  What is "liquid"? Understanding the states of matter , 1976 .

[7]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[8]  P. Ungerer,et al.  Prediction of thermodynamic derivative properties of natural condensate gases at high pressure by Monte Carlo simulation , 2004 .

[9]  N. Seaton,et al.  Adsorption of Carbon Dioxide and Methane and Their Mixtures on an Activated Carbon: Simulation and Experiment , 1999 .

[10]  Jeffrey J. Potoff,et al.  Molecular simulation of phase equilibria for mixtures of polar and non-polar components , 1999 .

[11]  M Scott Shell,et al.  The relative entropy is fundamental to multiscale and inverse thermodynamic problems. , 2008, The Journal of chemical physics.

[12]  M. Lísal,et al.  Effect of short- and long-range forces on the properties of fluids. III. Dipolar and quadrupolar fluids , 2001 .

[13]  Ioannis G. Economou,et al.  Statistical Associating Fluid Theory: A Successful Model for the Calculation of Thermodynamic and Phase Equilibrium Properties of Complex Fluid Mixtures , 2002 .

[14]  K. Gubbins,et al.  Accurate CO2 Joule-Thomson inversion curve by molecular simulations , 2002 .

[15]  Hans Hasse,et al.  Molecular models for 267 binary mixtures validated by vapor–liquid equilibria: A systematic approach , 2009 .

[16]  Zhenhao Duan,et al.  An optimized molecular potential for carbon dioxide. , 2005, The Journal of chemical physics.

[17]  Michael L. Klein,et al.  Simulations of Phospholipids Using a Coarse Grain Model , 2001 .

[18]  D. Kofke,et al.  Surface tension and vapor-liquid phase coexistence of the square-well fluid , 2003 .

[19]  Katie A. Maerzke,et al.  Transferable potentials for phase equilibria-coarse-grain description for linear alkanes. , 2011, The journal of physical chemistry. B.

[20]  Wilding,et al.  Scaling fields and universality of the liquid-gas critical point. , 1992, Physical review letters.

[21]  Y. Arai,et al.  Monte Carlo simulation for solubilities of polycyclic aromatic hydrocarbons in supercritical carbon dioxide: Lennard–Jones potentials for supercritical carbon dioxide+polycyclic aromatic hydrocarbon systems from benzene to graphite , 2000 .

[22]  J. Ilja Siepmann,et al.  Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen , 2001 .

[23]  Alan M. Ferrenberg,et al.  New Monte Carlo technique for studying phase transitions. , 1988, Physical review letters.

[24]  R. Swendsen,et al.  Transition Matrix Monte Carlo Method , 2001, cond-mat/0104418.

[25]  M. Klein,et al.  Exploring the utility of coarse-grained water models for computational studies of interfacial systems , 2010 .

[26]  George Jackson,et al.  New reference equation of state for associating liquids , 1990 .

[27]  R. R. Picard,et al.  Canonical transition probabilities for adaptive Metropolis simulation , 1999 .

[28]  Peter S. Lomdahl,et al.  MOLECULAR DYNAMICS COMES OF AGE: 320 BILLION ATOM SIMULATION ON BlueGene/L , 2006 .

[29]  Amparo Galindo,et al.  Application of a renormalization-group treatment to the statistical associating fluid theory for potentials of variable range (SAFT-VR). , 2011, The Journal of chemical physics.

[30]  E. A. Guggenheim The Principle of Corresponding States , 1945 .

[31]  H. Uchida,et al.  Monte Carlo simulation of solubilities of naphthalene in supercritical carbon dioxide , 1995 .

[32]  J. Perram,et al.  Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constants , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[33]  George Jackson,et al.  A group contribution method for associating chain molecules based on the statistical associating fluid theory (SAFT-gamma). , 2007, The Journal of chemical physics.

[34]  H. Uchida,et al.  Molecular dynamics simulation of diffusion coefficients of naphthalene and 2-naphthol in supercritical carbon dioxide , 1997 .

[35]  J. Potoff,et al.  Mie potentials for phase equilibria calculations: application to alkanes and perfluoroalkanes. , 2009, The journal of physical chemistry. B.

[36]  Jeffrey R. Errington,et al.  Direct calculation of liquid–vapor phase equilibria from transition matrix Monte Carlo simulation , 2003 .

[37]  G. Gao,et al.  Self-diffusion coefficient equation for polyatomic fluid , 1999 .

[38]  Wataru Shinoda,et al.  Multi-property fitting and parameterization of a coarse grained model for aqueous surfactants , 2007 .

[39]  Wilding Critical-point and coexistence-curve properties of the Lennard-Jones fluid: A finite-size scaling study. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[40]  J. Ilja Siepmann,et al.  Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes , 1998 .

[41]  Wataru Shinoda,et al.  A Transferable Coarse Grain Non-bonded Interaction Model For Amino Acids. , 2009, Journal of chemical theory and computation.

[42]  Kurt Binder,et al.  Monte Carlo calculation of the surface tension for two- and three-dimensional lattice-gas models , 1982 .

[43]  J. D. Johnson,et al.  Thermodynamics using effective spherical potentials for CO2 anisotropies , 1985 .

[44]  A. Buckingham Molecular quadrupole moments , 1959 .

[45]  Erich A. Müller,et al.  Molecular simulation of the Joule-Thomson inversion curve of carbon dioxide , 1999 .

[46]  M. Klein,et al.  Simulation of Diblock Copolymer Self-Assembly, Using a Coarse-Grain Model , 2004 .

[47]  Jeffrey J. Potoff,et al.  Surface tension of the three-dimensional Lennard-Jones fluid from histogram-reweighting Monte Carlo simulations , 2000 .

[48]  I. Fedchenia,et al.  Local orientational correlations and short time anisotropic motion in molecular liquids: Computer simulations of liquid CO2 , 1997 .

[49]  W. Wagner,et al.  A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple‐Point Temperature to 1100 K at Pressures up to 800 MPa , 1996 .

[50]  J. Fischer,et al.  Determination of an effective intermolecular potential for carbon dioxide using vapour-liquid phase equilibria from NpT + test particle simulations , 1994 .

[51]  M. Lísal,et al.  Accurate vapour–liquid equilibrium calculations for complex systems using the reaction Gibbs ensemble Monte Carlo simulation method , 2001 .

[52]  Low temperature behavior of thermodynamic perturbation theory. , 2009, Physical chemistry chemical physics : PCCP.

[53]  William K. Smith,et al.  Guest Editorial: DL_POLY–applications to molecular simulation II , 2006 .

[54]  B. Wood,et al.  Monte Carlo simulation of H2OCO2 mixtures to 1073.15 K and 30 kbar , 1996 .

[55]  Betsy M. Rice,et al.  Intermolecular potential of carbon dioxide dimer from symmetry-adapted perturbation theory , 1999 .

[56]  S. Kuwajima,et al.  Molecular dynamics simulation of supercritical carbon dioxide fluid with the model potential from ab initio molecular orbital calculations , 1996 .

[57]  Hans Hasse,et al.  Prediction of Joule–Thomson inversion curves for pure fluids and one mixture by molecular simulation , 2005 .

[58]  E. A. Müller,et al.  On the Calculation of Supercritical Fluid−Solid Equilibria by Molecular Simulation , 2003 .

[59]  M. I. H. P. C. H. P. R. M. Lynden-Bell A molecular dynamics study of carbon dioxide in water: diffusion, structure and thermodynamics , 2010 .

[60]  H. D. Cochran,et al.  VAPOR-LIQUID PHASE COEXISTENCE OF ALKANE-CARBON DIOXIDE AND PERFLUOROALKANE-CARBON DIOXIDE MIXTURES , 1999 .

[61]  Hongqin Liu,et al.  Self-Diffusion in Gases and Liquids , 1997 .

[62]  G. Mie Zur kinetischen Theorie der einatomigen Körper , 1903 .

[63]  S. Phillpot,et al.  Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r−1 summation , 1999 .

[64]  Michael L. Klein,et al.  A coarse grain model for n-alkanes parameterized from surface tension data , 2003 .

[65]  K. Gubbins,et al.  Thermal Properties of Supercritical Carbon Dioxide by Monte Carlo Simulations , 2003 .

[66]  B. Rice,et al.  A model for predicting the solubility of 1,3,5-trinitro-1,3,5-s-triazine (RDX) in supercritical CO2: isothermal–isobaric Monte Carlo simulations , 1999 .

[67]  George Jackson,et al.  Statistical associating fluid theory for chain molecules with attractive potentials of variable range , 1997 .

[68]  Claire S. Adjiman,et al.  A generalisation of the SAFT-γ group contribution method for groups comprising multiple spherical segments , 2008 .

[69]  Y. Arai,et al.  Monte Carlo simulation for pVT relationship of CO2+n-C4H10 and CO2+i-C4H10 systems , 1999 .

[70]  Gregory A Voth,et al.  Effective force fields for condensed phase systems from ab initio molecular dynamics simulation: a new method for force-matching. , 2004, The Journal of chemical physics.

[71]  G. Schatz,et al.  Modeling self-assembly processes driven by nonbonded interactions in soft materials. , 2008, The journal of physical chemistry. B.

[72]  M. M. Piñeiro,et al.  Simultaneous estimation of phase behavior and second-derivative properties using the statistical associating fluid theory with variable range approach. , 2006, The Journal of chemical physics.

[73]  M. Ricci,et al.  Orientational correlations in liquid and supercritical CO2: neutron diffraction experiments and molecular dynamics simulations , 2001 .

[74]  R. R. Picard,et al.  Monte Carlo Transition Dynamics and Variance Reduction , 2000 .

[75]  H. Uchida,et al.  Monte Carlo simulation of solubilities of aromatic compounds in supercritical carbon dioxide by a group contribution site model , 1996 .

[76]  Jeffrey R Errington Evaluating surface tension using grand-canonical transition-matrix Monte Carlo simulation and finite-size scaling. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[77]  Kurt Kremer,et al.  Multiscale simulation of soft matter systems. , 2010, Faraday discussions.

[78]  Berg,et al.  Multicanonical ensemble: A new approach to simulate first-order phase transitions. , 1992, Physical review letters.

[79]  Wataru Shinoda,et al.  Large-Scale Molecular Dynamics Simulations of Self-Assembling Systems , 2008, Science.

[80]  Eric Jakobsson,et al.  A Coarse-Grained Model Based on Morse Potential for Water and n-Alkanes. , 2010, Journal of chemical theory and computation.

[81]  O. Kitao,et al.  Computer simulation of the supercritical carbon dioxide fluid (II) internal energy and structure of carbon dioxide system containing one benzene molecule , 1996 .

[82]  Dirk Reith,et al.  Deriving effective mesoscale potentials from atomistic simulations , 2002, J. Comput. Chem..

[83]  Wataru Shinoda,et al.  Coarse-grained potential models for phenyl-based molecules: I. Parametrization using experimental data. , 2010, The journal of physical chemistry. B.

[84]  Kwong H. Yung,et al.  Carbon Dioxide's Liquid-Vapor Coexistence Curve And Critical Properties as Predicted by a Simple Molecular Model , 1995 .

[85]  H. Hasse,et al.  Prediction of ternary vapor–liquid equilibria for 33 systems by molecular simulation , 2009, 0906.3170.

[86]  Timothy C. Germann,et al.  TRILLION-ATOM MOLECULAR DYNAMICS BECOMES A REALITY , 2008 .

[87]  G. Voth Coarse-Graining of Condensed Phase and Biomolecular Systems , 2008 .

[88]  B. Rice,et al.  NPT-MC simulations of enhanced solubility of RDX in polar-modified supercritical CO2 , 1999 .

[89]  K. Binder,et al.  A Guide to Monte Carlo Simulations in Statistical Physics: Preface , 2005 .

[90]  George Jackson,et al.  Test-area simulation method for the direct determination of the interfacial tension of systems with continuous or discontinuous potentials. , 2005, The Journal of chemical physics.

[91]  K. Binder,et al.  Efficient prediction of thermodynamic properties of quadrupolar fluids from simulation of a coarse-grained model: the case of carbon dioxide. , 2008, The Journal of chemical physics.

[92]  E. A. Müller Staggered alignment of quadrupolar molecules inside carbon nanotubes. , 2008, The journal of physical chemistry. B.

[93]  A. Panagiotopoulos,et al.  Vapor+liquid equilibrium of water, carbon dioxide, and the binary system, water+carbon dioxide, from molecular simulation , 2000 .

[94]  K. Shing,et al.  Grand Canonical Monte Carlo Simulation for Solubility Calculation in Supercritical Extraction , 1989 .

[95]  Michael L. Klein,et al.  Thermodynamic properties for a simple model of solid carbon dioxide: Monte Carlo, cell model, and quasiharmonic calculations , 1974 .

[96]  Alejandro Gil-Villegas,et al.  Monte Carlo simulations of primitive models for ionic systems using the Wolf method , 2006 .

[97]  K. Binder,et al.  Spherically averaged versus angle-dependent interactions in quadrupolar fluids. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[98]  Hans Hasse,et al.  Molecular model for carbon dioxide optimized to vapor-liquid equilibria. , 2010, The Journal of chemical physics.

[99]  R. C. Reeder,et al.  A Coarse Grain Model for Phospholipid Simulations , 2001 .

[100]  Molecular simulations of thermodynamic properties for N2CO2CH4 mixtures at saturation conditions , 1997 .

[101]  Yanru Wang,et al.  Molecular dynamics investigation on the infinite dilute diffusion coefficients of organic compounds in supercritical carbon dioxide , 2000 .

[102]  G. Matthews,et al.  An effective isotropic pair potential energy function for carbon dioxide , 1989 .

[103]  Papadopoulos,et al.  The Structure of Adsorbed CO(2) in Slitlike Micropores at Low and High Temperature and the Resulting Micropore Size Distribution Based on GCMC Simulations. , 2000, Journal of colloid and interface science.

[104]  Y. Arai,et al.  Calculation of Self-Diffusion and Tracer Diffusion Coefficients near the Critical Point of Carbon Dioxide Using Molecular Dynamics Simulation , 2000 .

[105]  O. Kitao,et al.  A New Potential Model for Carbon Dioxide from AB Initio Calculations , 1994 .

[106]  P. Cummings,et al.  Molecular dynamics simulation of reverse micelles in supercritical carbon dioxide , 2000 .

[107]  Gregory A. Voth,et al.  The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models. , 2008, The Journal of chemical physics.

[108]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[109]  G. Jackson,et al.  An analytical equation of state for chain molecules formed from Yukawa segments , 1999 .

[110]  P. Cummings,et al.  Self-Assembly of Reverse Micelles in Water/Surfactant/Carbon Dioxide Systems by Molecular Simulation , 1999 .

[111]  K. Gubbins,et al.  An Equation of State for Water from a Simplified Intermolecular Potential , 1995 .

[112]  L. F. Rull,et al.  Phase equilibria and critical behavior of square‐well fluids of variable width by Gibbs ensemble Monte Carlo simulation , 1992 .

[113]  P. Cummings,et al.  Molecular Simulation of a Dichain Surfactant/Water/Carbon Dioxide System. 1. Structural Properties of Aggregates , 2001 .

[114]  K. Nakanishi Molecular simulation studies in supercritical fluid and related regions , 1998 .

[115]  C. Koh,et al.  Experimental and Computer Simulation Studies of the Removal of Carbon Dioxide from Mixtures with Methane Using AlPO4-5 and MCM-41† , 1999 .

[116]  Yu Zhu,et al.  Prediction of diffusion coefficients for gas, liquid and supercritical fluid: application to pure real fluids and infinite dilute binary solutions based on the simulation of Lennard–Jones fluid , 2002 .

[117]  Philippe Ungerer,et al.  Prediction of thermodynamic derivative properties of fluids by Monte Carlo simulation , 2001 .

[118]  George Jackson,et al.  THE THERMODYNAMICS OF MIXTURES AND THE CORRESPONDING MIXING RULES IN THE SAFT-VR APPROACH FOR POTENTIALS OF VARIABLE RANGE , 1998 .

[119]  K. Binder,et al.  Coarse-grained models for fluids and their mixtures: Comparison of Monte Carlo studies of their phase behavior with perturbation theory and experiment. , 2008, The Journal of chemical physics.

[120]  Ian R. McDonald,et al.  Interaction site models for carbon dioxide , 1981 .

[121]  B. Kirchner,et al.  Structural and thermodynamic properties of fluid carbon dioxide from a new ab initio potential energy surface , 1998 .

[122]  K. Binder,et al.  Phase behavior of n-alkanes in supercritical solution: a Monte Carlo study. , 2004, The Journal of chemical physics.

[123]  S. Tsuzuki,et al.  Molecular dynamics simulations of fluid carbon dioxide using the model potential based on ab initio MO calculation , 1999 .

[124]  Gregory A Voth,et al.  A multiscale coarse-graining method for biomolecular systems. , 2005, The journal of physical chemistry. B.

[125]  Russell DeVane,et al.  Nanoscale organization in room temperature ionic liquids: a coarse grained molecular dynamics simulation study. , 2007, Soft matter.

[126]  K. E. Starling,et al.  Equation of State for Nonattracting Rigid Spheres , 1969 .

[127]  Erich A. Müller,et al.  Molecular-Based Equations of State for Associating Fluids: A Review of SAFT and Related Approaches , 2001 .

[128]  L. Onsager Electric Moments of Molecules in Liquids , 1936 .

[129]  Hans Hasse,et al.  A Set of Molecular Models for Symmetric Quadrupolar Fluids , 2001 .

[130]  C. H. Patterson,et al.  A simulation study of the kinetics of passage of CO2 and N2 through the liquid/vapor interface of water , 1999 .

[131]  H. Uchida,et al.  Monte Carlo simulation of solubilities of naphthalene, phenanthrene, and anthracene in supercritical fluids , 1998 .

[132]  T. Nitta,et al.  Computer simulation studies of adsorption characteristics in supercritical fluids , 1998 .

[133]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[134]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[135]  Hongqin Liu,et al.  New equations for tracer diffusion coefficients of solutes in supercritical and liquid solvents based on the Lennard-Jones fluid model , 1997 .

[136]  K. Binder,et al.  Coarse-graining dipolar interactions in simple fluids and polymer solutions: Monte Carlo studies of the phase behavior. , 2009, Physical chemistry chemical physics : PCCP.

[137]  F. Wegner Corrections to scaling laws , 1972 .

[138]  Hisashi Okumura,et al.  Liquid–vapor coexistence curves of several interatomic model potentials , 2000 .

[139]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[140]  H. Uchida,et al.  Diffusion coefficients of aromatic compounds in supercritical carbon dioxide using molecular dynamics simulation , 1998 .

[141]  Alan M. Ferrenberg,et al.  Optimized Monte Carlo data analysis. , 1989, Physical Review Letters.

[142]  G. Torrie,et al.  Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid , 1974 .

[143]  Keith E. Gubbins,et al.  Theory of molecular fluids , 1984 .

[144]  G. Jackson,et al.  Describing the Properties of Chains of Segments Interacting Via Soft-Core Potentials of Variable Range with the SAFT-VR Approach , 1998 .

[145]  E. A. Müller,et al.  Molecular Modeling of Fluid-Phase Equilibria Using an Isotropic Multipolar Potential , 2003 .

[146]  Y. Arai,et al.  Monte Carlo simulation for solubility and spatial structure of fatty acid and higher alcohol in supercritical carbon dioxide with octane , 1997 .

[147]  Victor Rudolph,et al.  Simulation of binary mixture adsorption of methane and CO2 at supercritical conditions in carbons , 2006 .

[148]  Ranjit Biswas,et al.  Intermolecular Interactions and Local Density Augmentation in Supercritical Solvation: A Survey of Simulation and Experimental Results , 2000 .

[149]  H. Hasse,et al.  Comment on "An optimized potential for carbon dioxide" [J. Chem. Phys. 122, 214507 (2005)]. , 2008, The Journal of chemical physics.

[150]  R. Faller Coarse-grained modeling of soft condensed matter. , 2009, Physical Chemistry, Chemical Physics - PCCP.

[151]  P. Gordon Development of intermolecular potentials for predicting transport properties of hydrocarbons. , 2006, The Journal of chemical physics.

[152]  George Jackson,et al.  SAFT: Equation-of-state solution model for associating fluids , 1989 .

[153]  R. Persson Gaussian charge polarizable interaction potential for carbon dioxide. , 2010, The Journal of chemical physics.

[154]  T. Beck,et al.  Vapor-liquid equilibria of binary and ternary mixtures containing methane, ethane, and carbon dioxide from Gibbs ensemble simulations , 1998 .

[155]  T. Boublík Background correlation functions in the hard sphere systems , 1986 .